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RESUMO

No  trabalho  realiza-se  a  simulação  de  um  sistema
pistão-biela-manivela,  com  mancal  e  juntas  hidrodinâmicos  curtos,  a
fim  de  se  investigar  o  atrito  viscoso  nestes  presente.  Inicialmente
realiza-se  uma  modelagem  de  um  sistema  simplificado,  simulado  em
scilab para se entender o comportamento dos componentes principais do sistema, e
comparar  com  a  modelagem  completa,  simulado  no  software
ADAMS  da  MSC.  O  trabalho  mostra  que  a  excentricidade  e  o  atrito
viscoso  presente  no  mancal  e  nas  juntas  é  altamente dependente  dos
fatores  construtivos  dos  mesmos,  como  o  seu  comprimento,  raio  e  folga
radial, assim como da viscosidade do óleo utilizado. O trabalho mostra também as
diferenças  de  simulação  entre  os  dois  softwares  utilizados,  porém a  modelagem
utilizada se restringe para mancais hidrodinâmicos curtos.
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ABSTRACT

In this report a simulation of the piston, conecting rod and camshaft system is done
with the short bearing model, to investigate the viscous friction among them. Initially
the modeling of a simplified system is done, and simulated in scilab, to understand
the response of the main components of the system, and also to compare to the full
modeling, simulated with the software ADAMS from MSC. The work shows that the
excentricity  and  friction  of  the  bearing  and  joints is  highly  dependent  on  the
constructive factors  of such componentes, such as length, radius, radial clearence,
and oil viscosity used. The work also shows the differences on the simulation of both
softwares used, however the modeling is restricted to short bearings.
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1. Introdução

1.1. Contexto

Como diversos autores citam, as técnicas de compressão de ar, já estão presentes

há milhares de anos antes de Cristo. Clumský (1965) cita algumas aplicações antigas da

utilização de ar comprimido, como instrumentos musicais de sopro, ar comprimido para

pessoas submersas na água (por uma mangueira de couro), instrumento de sopro para

aumentar a brasa em fogueiras e até os primeiros modelos de órgãos musicais. 

Os primeiros compressores alternativos acionados a vapor apareceram na segunda

metade do  século  18,  e  ficaram muito  mais  populares  com a invação  das  furadeiras

movidas a ar comprimido. Alguns dos motivos pela clara preferência por ar comprimido

para o acionamento de furadeiras eram o aumento da eficiência (pode se armazenar ar

comprimido a temperaturas baixas, sem perde de energia, ao passo que o vapor possui

complicações  pela  alta  temperatura),  e  a  segurança  quando  comparada  ao  vapor

(também  advindo  das  baixas  temperaturas  do  ar  comprimido).  Com  o  aumento  das

aplicações do ar comprimido na indústria, surgiram, no início do século 20, os primeiros

turbocompressores.

Os compressores dinâmicos possibilitaram uma maior aplicação industrial onde são

necessárias  altas  vazões.  Quando  se  fala  de  taxas  de  compressão  muito  altas,  ou

aplicações  em baixas  capacidades,  os  compressores  alternativos  até  hoje  ainda  são

dominantes.  Para  refrigeração  de  geladeiras,  por  exemplo,  ainda  são  amplamente

utilizados pelo seu baixo custo e alta eficiência.

Dessa forma, muitos estudos ainda são realizados no âmbito de se entender as

vibrações  e  ruído  produzidos  em tais  compressores,  assim como para  aumentar  sua

eficiência energética e vida útil, e em outros aspectos, como por exemplo relacionados à

manutenção e confiabilidade desses compressores. 

1.2. Compressores 

Silva (1977) define compressores como máquinas com a finalidade de comprimir
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gases  para  diversas  aplicações,  como:  pintura,  ferramentas  pneumáticas,  limpeza  de

peças, compressão de gás de cozinha, entre outros. No trabalho, ele cita que a diferença

básica  entre  os  compressores  e  os  ventiladores  se  dá  pela  elevação  de  pressão

geralmente maior e vazão geralmente menor de compressores. Em casos limítrofes, é

defícil se determinar se uma máquina é um compressor ou um ventilador.

Chlumský (1965) caracteriza um compressor de maneira similar, como sendo uma

máquina para compressão repetida de gases, ressaltando também que ventiladores são

máquinas que elevam a pressão do gás somente a ponto de ultrapassar a resistência que

surge no fluxo do gás. 

Os dois tipos de compressores que existem são: compressores dinâmicos e de

deslocamento positivo. Os compressores dinâmicos são aqueles que transmitem energia

cinética ao fluido convertendo-a futuramento em pressão por meio de um difusor, podendo

ser axiais, onde o fluxo é perpendicular ao movimento das pás do compressor (no eixo de

rotação); radiais ou centrífugos,  onde o fluxo é na direção radial.  Existem também os

compressores dinâmicos mistos,  também chamados de diagonais,  que estão entre os

compressores radiais e axiais.

Já  os  compressores  de  deslocamento  positivo  ou  estáticos,  são  aqueles  que

comprimem o gás pela redução do seu volume. Estes podem ser rotativos, como os de

parafuso, de lóbulos, de cilinbro conchoidal, de engrenagens, entre outros e alternativos

que serão estudados mais amplamente neste trabalho.

O funcionamento de um compressor alternativo se dá pela diminuição do volume

em uma câmara de compressão por um pistão, que é acionado por uma biela, conectada

em uma manivela. O gás é comprimido pelo pistão até atingir a pressão de descarga,

determinada pela válvula de escape. Desse ponto em diante a válvula de escape se abre

e o gás de dentro da câmara é expelido para um reservatório de alta pressão, onde é

armazenado para  uso  posterior.  Quando o  pistão  atinge  o  fim de  curso  e  começa o

movimento de retrocesso, a pressão do gás remanescente na câmara de compressão

diminui,  até  alcançar  a  pressão de sucção,  determinada pela  válvula  de admissão.  A

válvula de admissão se abre, e o gás é admitido para dentro da câmara de compressão. A

Figura 1 mostra os diversos elementos de um compressor alternativo.
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Figura 1: Diagrama dos principais
componentes de um compressor alternativo

Fonte:http://blogdoprofessorcarlao.blogsp

ot.com/2009/05/funcionamento-do-

compressor-alternativo_10.html

Feller (1944) classifica os diversos tipos de compressores alternarivosde acordo

com  o  acionamento  e  da  conexão  com  a  unidade  motora.  Alguns  desses  tipos  de

compressoes  são:  de  acordo  com  o  acionamento:  compressor  acionado  por  motor

elétrico, por vapor ou por motor de combustão interna, e; de acordo com a conexão com a

unidade motor: diretamente conectado, diretamente conectado com acoplamento flexível,

por par redutor de engrenagens, por correia, e en bloc.

Os compressores alternativos podem apresentar diferentes números de estágios e

de cilindros. Um compressor com mais de um estágio é aquele que comprime o ar até a

pressão  de  descarga  em  mais  de  um  processo  de  aumento  de  pressão,  mas  não

necessariamente em mais de um cilindro, como pode ser observado na Figura 2. 
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Figura 2: Compressores multiestagiados: a) Compressor de dois estágios; b) Compressor de
três estágios vertical; c) Compressor de três estágios horizontal

Fonte: Silva (1977)

Já  os  compressores  policilíndricos  possuem  mais  de  um  cilindro.  Aumentar  o

número de cilindros ao invés de aumentar um clindro e seu dimensionamento pode ser

explicado pelo fato que existe um tamanho ótimo de cilindro em relação ao peso (peso

mínimo), e assim é possível uma redução de massa, e melhores destribuições do torque

no tempo já que enquanto um dos cilindros opera na fase de descarga ou compressão, o

outro  opera  na  sucção  ou  expansão  (SILVA,  1977).  Alguns  tipos  diferentes  de

compressores policilíndricos podem ser vistos na Figura 3.

Figura 3: Compressores Policilíndricos: a) Cilindros em V; b) Cilindros em duplo V; c)
Cilindros em ângulo reto

Fonte: Silva (1977)

Construtivamente,  os  compressores  alternativos  podem  ser  abertos,  semi-

herméticos  ou  herméticos  (BASSETTO,  1997).  Enquanto  que  nos  compressores

alternativos abertos o motor é exterior à carcaça, necessitando de selo para vedação, nos

herméticos e semi herméticos a carcaça contém o motor,  sendo nos semi-herméticos

13



possível a remoção do cabeçote para acesso às válvulas e pistões.

1.3. Justificativa

Como já  citado,  muitos estudos têm sido realizados no âmbito  de:  aumentar  a

eficiência  térmica  e  mecânica  de  compressores  alternativos,  aumentar  a  vida  útil  e

diminuir  ruído  e  vibrações.  Serrano  (2002),  por  exemplo,  faz  menção  aos  trabalhos

desenvolvidos  para  a  melhoria  termodinâmica  do  processo  nos  compressores,  assim

como  desenvolve  seu  trabalho  a  cerca  de  parâmetros  termodinâmicos,  como

transferência  de  calor  do  sistema,  distribuição  de temperaturas,  diagramas de  pV na

câmara de compressão, entre outros.

Um dos pontos principais que têm sido analisados são as juntas presentes em um

sistema pistão-biela-manivela dentro de um compressor (assim como em outras máquinas

que  utilizem  tal  sistema,  como  motores  de  combustão  intera,  porém  com  enfoques

diferentes, não priorizando tanto o ruído, por exemplo). Um dos parâmetros importantes

nas juntas do sistema é relação entre a espessura do filme de óleo e a rugosidade do

material, que pode determinar o regime de lubrificação, como sendo marginal, misto ou

hidrodinâmico (DURVAL, 2005). Tal parâmetro tem influência direta sobre o atrito em tal

junta e a vida útil do sistema.

Gerardin (2005) desenvolve um trabalho de mancal hidrodinâmico em um motor de

combustão interna (também dotado do sistema pistão-biela-manivela), para se chegar às

distribuições de pressão e de força no mancal e folgas, de acordo com a pressão de

combustão. Em sua análise ele utiliza a equação de Reynolds e o método de elementos

finitos para o modelo do mancal hidrodinâmico, comprovando a eficiência e precisão do

método nos resultados, e sugerindo, para um trabalho futuro, a utilização de um sistema

com integração pelo método de Runge Kutta para a resolução com o sistema dinâmico. 

Já  Izuka  (2007)  desenvolve  um  trabalho  especificamente  para  compressores

herméticos,  onde  utiliza  para  o  modelo  matemático  dos  mancais  hidrodinâmicos  três

metodologias diferentes: métodos dos elementos finitos, método das diferenças finitas e

método dos volumes finitos, comparando as três metodologias para os casos analíticos de

mancais curtos e mancais longos e posteriormente realiza uma simulação para mancais

finitos.  Ele  também  se  preocupa  com  a  dinâmica  do  sistema  pistão-biela-manivela,
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utilizando o método de Newton Euler para a integração temporal. Os resultados obtidos

são bem próximos aos resultados analíticos,  e  a  sugestão para trabalhos futuros é a

comparação com softwares comerciais, assim como a inclusão da cavitação no mancal e

elasticidade no alojamento.

Couto (2006) também estudou a lubrificação de compressores alternativos, criando

uma bancada experimental para a comparação com resultados teóricos fornecidos pelo

método  de  elementos  finitos,  considerando  também  efeitos  elásticos.  Os  resultados,

porém, não foram possíveis de serem replicados no trabalho de Izuka (2007). 

Estupiñan e Santos (2007) criam um modelo de compressor alternativo com pistão

considerado  como partícula,  biela  e  manivela  como corpos  rígidos  e  eixo  do  mancal

flexível, com mancal hidrodinâmico curto, utilizando o método de elementos finitos para os

elementos flexíveis e sistemas de dinâmica de multicorpos para os corpos rígidos. Eles

mostraram que embora o desbalanceamento do sistema afete a dinâmica da órbita do

eixo no mancal hidrodinâmico, não afeta significativamente as forças e espessura do filme

de óleo.

Outra parte muito estudada no sistema pistão-biela-manivela, mas que não será

abordada nesse trabalho,  podendo ser adicionada para um sistema mais realístico no

futuro, é o ângulo que o eixo do pistão forma com o eixo do cilindro, também chmada de

movimento secundário do pistão, que, embora pequeno, interfere em muito no atrito entre

cilindro e pistão e nas interações hidrodinâmicas entre eles. Prata,  Fernades e Fagoti

(2001) chegam a conclusões sobre melhores valores de escolha para posicionamento do

pino do pistão, assim como viscosidade do fluido lubrificante e folga radial entre saia do

pistão e cilindro.

Percebe-se  portanto  um esforço no sentido  de melhor  entender  os  efeitos  nos

mancais dos compressores alternativos. Porém, até não se deu muita atenção ainda às

juntas da biela com a manivela e da biela com o pistão, e seus efeitos para a vibração e

sobre o atrito do sistema. Este trabalho possui a finalidade portanto de estudar melhor o

efeito em tais juntas, considerando somente a teorica de mancais hidrodinâmicos curtos,

e  descobrir  quais  forças,  excentricidades  e  órbitas  nessas  juntas,  além  do  mancal

principal, também já estudado por outros autores. 
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2. Revisão Bibliográfica

2.1. Vínculos, graus de liberdade e coordenadas gen eralizadas

Para descrever no espaço com relação a um referencial a posição de uma partícula que está

completamente livre de quaisquer restrições no seu movimento, é necessário se utilizar um sistema

de  3  coordenadas,  onde  uma  delas  necessariamente  deverá  ter  a  dimensão  de  comprimento

(existindo  a  possibilidade  das  outras  duas  coordenadas  possuirem  ou  não  dimensão  de

comprimento).  Nota-se  que,  nesse  caso,  pode-se  variar  qualquer  coordenada  desse  sistema  de

coordenadas da partícula sem alterar as outras. Exemplos  de  sistemas  de  coordenadas  muito

utilizados são: cartesianas, esféricas e cilíndricas:

r i= f xi , yi , zi = f r i ,i ,i= f r i ,hi ,i 

De uma forma geral serão chamadas dexi ,1 , xi ,2 e xi ,3 as coordenadas da partícula i:

r i= f xi ,1 , xi ,2 , xi ,3

Se o sistema a ser analisado possuir  um determinado número N de partículas, livres de

quaisquer restrições, será necessário um número três vezes maior de coordenadas para descrever

completamente tal sistema:

r 1= f x1,1, x1,2 , x1,3

r 2= f x2,1 , x2,2, x2,3

r 3= f x3,1, x3,2 , x3,3

r 4= f x4,1 , x4,2, x4,3

.

.

.
r N= f xN ,1 , xN ,2 , xN ,3

Se  for  considerado  o  caso  bidimensional  será  necessário  um sistema  de  apenas   duas

coordenadas  para  descrever  a  posição  da partícula.  Portanto  um  sistema  com  N  partículas

completamente sem restrições será descrito por um número duas vezes maior de coordenadas:
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r1= f x1,1, x1,2

r2= f  x2,1, x2,2

r3= f x3,1, x3,2

r 4= f  x4,1, x4,2

.

.

.
r N= f xN ,1 , xN ,2

Por outro lado, percebe-se que em muitas situações, as partículas possuem restrições aos

seus  movimentos,  restrições  essas  chamadas  de  vínculos.  Vínculos  são,  como  Lemos  (2007)

descreveria:

“Vínculos são limitações às possíveis posições e velocidades das partículas
de um sistema mecânico, restringindo a priori o seu movimento”.

Quando se introduzem vínculos ao sistema, percebe-se que não mais é possível alterar todas

as  coordenadas  de  maneira  independente.  Assim  os  vínculos  introduzem  relações  entre  as

coordenadas. Se um vínculo é dito holônomo, tal relação será dada por:

f x1,1 , x1,2 , x1,3, x2,1 , x2,2 , x2,3, x3,1 , x3,2, x3,3 ,... , xN ,1 , xN ,2 , xN ,3 , t=0

Dessa forma, se o sistema possuir S vínculos holônomos, pode-se perceber que esse sistema

apresentaL=3N−S grupos de coordenadas independetes entre si, chamados graus de liberdade.

Como exemplo, considere um sistema onde  uma partícula pode percorrer livremente a borda de um

cilindro como mostrado na figura 4:
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O sistema possui um único vínculo:x2 y2=R2 . Assim, N para esse sistema é 1 (por só

existir uma partícula) e S é 1 (um único vínculo), portanto L será L=3N−S=2 . Percebe-se que

nesse sistema, as coordenadas cartesianas x e y do sistema são dependentes entre si, e a coordenada

z independente. Pode-se dizer então que o grupo de coordenadas composto por x e y é independente

do grupo de coordenadas composto por z.

Cada  grupo  de  coordenadas  independente  pode  ser  assim  substituído  por  uma  única

coordenada  que  descreve  completamente tal  grupo,  e  assim  obtém-se  o  número  mínimo  de

coordenadas que descrevem completamente o sistema. No exemplo acima, as coordenadas x e y

poderiam ser  substituídas  por ,  e  assim o  sistema poderia  ser  completamente  descrito  por

apenas e z.

Tais coordenadas independentes são as coordenadas generalizadas de um sistema e são em

quantidade iguais aos graus de liberdade do sistema. Serão aqui designadas pela letraq .

2.2. Graus de liberdade de um corpo rígido

Um corpo rígido é definido como um corpo constituído de um número finito de partículas,

no qual a distância entre duas quaisquer não se alterará. Dessa forma, pode-se dizer que entre duas

partículas quaisquer do corpo rígido, existe um vínculo, que pode ser imaginado como uma haste

fixa. Esses vínculos são os vínculos internos a um corpo rígido.
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Assim, se um corpo rígido possuir N partículas, poderia ser descrito por 3N coordenadas

dependentes. Porém, escolhendo-se três partículas quaisquer do corpo, percebe-se que  a primeira

dessas possui N-1 relações de vínculo com todas as outras N-1 partículas. A segunda partícula terá

N-2 relações de vínculo com as outras N-2 partículas que sobraram, e, da mesma maneira, a terceira

partícula possuirá N-3 relações de vínculo com as partículas que sobrarem.

Em outras palavras, ao se observar a primeira partícula, ela pode fazer um percurso qualquer

no espaço. Já a segunda, por estar restringida a essa, pode se mover em uma calota esférica ao redor

da primeira.  Já a terceira poderá  percorrer a intersecção entre uma calota esférica ao redor da

primeira e outra calota esférica ao redor da segunda, ou seja, uma circunferência.

Já a quarta partícula, teoricamente poderia percorrer a intersecção de três calotas esféricas,

ao redor das partículas anteriores. Isso implicaria dizer que tal partícula poderia ocupar dois pontos

no espaço. Porém, tal proposição é logicamente falsa, pois para ir de um ponto para o outro, a

partícula precisaria percorrer todos os pontos entre eles.  Assim, dada a configuração inicial  do

corpo, a quarta partícula e as restantes, só podem ocupar um ponto.

Portanto, um corpo rígido, sem a ação de vínculos externos, é descrito por 3N coordenadas

dependentes  eN−1N−2N−3=3N−6 relações  entre  tais  coordenadas  (ou  vínculos

internos  do  corpo  rígido).  Assim sendo,  tal  corpo  rígido  possuirá  3N−3N−6=6 graus  de

liberdade e também 6 coordenadas independentes.

Tais graus de liberdade do corpo podem ser também traduzidas em:

– Translação em 3 direções linearmente independentes, e ;

– Rotação em torno de 3 eixos linearmente independentes.

Da mesma maneira, para o caso bidimensional escolhem-se duas partículas, a primeira com

N-1 relações independentes de vínculo com o resto do sistema e a segunda com N-2 relações. Assim

sendo,  quaisquer  outras poderão ser expressas em termos dessas duas. Portanto o sistema terá

2N−N−1−N−2=3 graus  de  liberdade  e  coordenadas  independentes,  quando  não

houverem vínculos externos. 

Os graus de liberdade do corpo no caso bidimensional são:

– Translação nas 2 direções linearmente independentes que definem o plano, e ;

– Rotação em torno do eixo normal ao plano considerado.

No sistema pistão-biela-manivela existem três corpos rígidos, e portanto, se não houvessem

vínculos entre tais corpos e entre esse sistema e os arredores, haveriam 9 graus de liberdade (caso

bidimensional). Porém, existem no sistema 8 vínculos. Desses, 4 são entre os corpos rígidos:

– 2 vínculos no ponto de contato entre biela e manivela, impondo que esse ponto deverá
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sempre ser coincidente para os dois corpos (ou seja, restringindo translação nas duas

direções possíveis);

– 2 vínculos no ponto de contato entre biela e pistão (novamente restringindo translação

nas duas direções possíveis).

Repare que seriam três os  vínculos entre os corpos rígidos quando fosse analisado o caso

tridimensional. E existem também 4 vínculos dados pelos dois apois do sistema com os arredores:

– 2 vínculos no centro  de rotação da manivela  (restringindo todo o movimento desse

ponto, e assim qualquer outro ponto estará sempre à mesma distância de tal apoio), e;

– 2 vínculos em dois pontos diferentes no pistão, restringindo em ambos o movimento em

uma direção e deixando a direção normal à essa (e pertencente ao plano de análise) livre.

Dessa maneira  o  sistema só  possui  um único grau  de liberdade,  e  será  completamente

definido por uma única coordenada, podendo todas as outras coordenadas ficarem em função desta.

Mais  adiante,  na  modelagem  do  sistema  serão  mostradas  as  relações  entre  as  coordenadas

dependentes do sistema.

2.3. Trabalhos Virtuais

O trabalho que uma força genéricaF i  realizada em uma partícula i é dado por:

W i=∫ F i⋅d r i , 

onde d r i é a variação infinitesimal do vetor posição da partícula r i . Como F i é uma força

qualquer atuante na partícula, fica evidente que pode ser também a resultante das forças na partícula

(pode se demonstrar fazendo a soma dos trabalhos realizados pelas diferentes forças atuantes na

partícula).

Como o trabalho realizado por uma força é o produto escalar entre ela e o deslocamento da

partícula, percebe-se que quando estes forem perpendiculares o trabalho será nulo. Esse é um caso

de particular interesse para as forças vinculares, pois possuem direção sempre perpendicular ao

deslocamento da partícula em que atuam, quando forem consideradas variações instantâneas.

Desse  modo,  convém  definir  um  deslocamento  instantâneo,  para  que  todas  as  forças

vinculares sejam perpendiculares a tais deslocamentos, e assim os trabalhos provenientes destas

forças, nulos.

Introduz-se então o conceito de deslocamento virtual, ou seja, deslocamentos considerando

que o tempo não varia. Se for utilizada a expressão anterior com variação infinitesimal virtual da
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posição da partícula( r i ), e forem separaradas as forças em forças vinculares ( F i , vinc ) e não

vinculares ( F i , nvinc ), obtém-se:

W i , v=F i , nvinc⋅ r iF i , vinc⋅ r i=F i ,nvinc⋅ r i ,

pois o termo F i , vinc⋅ r i é igual a 0. Percebe-se portanto que o trabalho virtual de uma partícula

depende somente das forças não vinculares e do deslocamento virtual desta.

Assim o trabalho de um sistema em um deslocamento virtual infinitesimal será:

Wv=∑
i

N

W i , v=∑
i

N

F i , nvinc⋅ r i .

2.4. Algumas relações importantes 

Antes de se começar a dedução das equações de Lagrange vale a pena demonstrar algumas

relações que serão futuramente utilizadas.

Como  já  foi  dito,  o  sistema  pode  ser  completamente  descrito  pelas  S  coordenadas

generalizadas. Dessa forma, uma coordenada j qualquer de uma partícula i qualquer desse sistema,

poderá ser descrita por uma função das coordenadas generalizadas:

xi , j= f q1 ,q2 ,q3 , ...,qS , t .

Assim como a posição total da partícula i:

r i= f q1 ,q2 ,q3 ,... ,qS , t  .

Assim, variações infinitesimais dexi , j e de r i podem ser descritas pela diferenciação

das expressões anteriores:

 xi , j=∑
k

S ∂ xi , j

∂ qk

⋅qk
d xi , j

dt
⋅ t ;

 r i=∑
k

S ∂ r i

∂qk

⋅qk
d r i

dt
⋅ t .

Se houver um deslocamento virtual, a variação infinitesimal da posição da partícula i não

dependerá do tempo, como já antes visto, portanto:

 r i=∑
k

S ∂ r i

∂qk

⋅qk .
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E se tal expressão for derivada no tempo, como a variação da posiçao da partícula em função

da variação da coordenada generalizada não depende do tempo, será obtido:

 ̇r i=∑
k

S ∂ r i

∂qk

⋅ q̇k .

Se essa ultima expressão for derivada com relação a uma velocidade generalizadȧqh

qualquer,  como q̇k só  depende  deq̇h quando k=h ,  e  
∂ r i

∂qk
não  depende deq̇h (nem

quando k=h ), obtém-se:

∂ ̇r i

∂ q̇h

=

∂∑k

S ∂ r i

∂qk

⋅ q̇k
∂ q̇h

=

∂ ∂ r i

∂ q1

⋅ q̇1
∂ q̇h



∂ ∂ r i

∂ q2

⋅ q̇2
∂ q̇h

...

∂ ∂ r i

∂qh

⋅ q̇h
∂ q̇h

...

∂ ∂ r i

∂ qS

⋅ q̇S
∂ q̇h

=
∂ r i

∂ qh

.

Vale relembrar que essa expressão só é válida para deslocamentos virtuais, e que h é uma

coordenada generalizada qualquer, e portanto poderia igualmente se dizer que 
∂ ̇r i

∂ q̇k

=
∂ r i

∂ qk

.

E, por último, se o termo
∂ r i

∂qk
for descrito como:

∂ r i

∂qk

=∑
l

S ∂
2 r i

∂ ql⋅∂ qk

⋅ql
∂

2r i

∂ qk⋅∂ t
⋅ t .

Ao se derivar no tempo, obtém-se:

d
d t  ∂ r i

∂ qk
=∑l

S ∂
2
r i

∂ ql⋅∂ qk

⋅q̇l
∂

2
r i

∂ qk⋅∂ t
=
∂

∂ qk
∑l

S ∂ r i

∂ ql

⋅q̇l
∂ r i

∂ t = ∂
̇r i

∂qk

.

Resumindo, para deslocamentos virtuais valem as seguintes expressões:

 r i=∑
k

S ∂ r i

∂qk

⋅qk , e;

 ̇r i=∑
k

S ∂ r i

∂qk

⋅ q̇k ;

∂ ̇r i

∂ q̇k

=
∂ r i

∂ qk

, e;

d
d t  ∂ r i

∂ qk
= ∂ ̇r i

∂ qk

.

2.5. Equações de Lagrange
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Como o que se pretende demonstrar é que o movimento de um corpo está relacionado à sua

energia e às forças nele atuante, começa-se a dedução pela segunda lei de Newton, que relaciona a

resultante de uma partícula com a aceleração dela, da seguinte forma:

F i=mi⋅̈r i .

O princípio de D´Alembert  diz que se o termomi⋅̈r i for  considerado como uma força

inercial, tal termo poderá ser jogado para o outro lado da equação e assim a somatória das forças

será nula. Desta forma, obtém-se:

∑
i

N

 F− ̈mi⋅r i ⋅r i=0 .

 O termo ∑
i

N

F i⋅ r i pode ser então substituído utilizando resultando em:

∑
i

N

F i⋅ r i=∑
i

N

 F i , nvincF i , vinc⋅ r i=∑
i

N

F i , nvinc⋅ r i=∑
i

N

F i , nvinc⋅∑
k

S ∂ r i

∂ qk

⋅ qk=

=∑
i

N

∑
k

S

F i ,nvinc⋅
∂ r i

∂ qk

⋅qk .

Como  já  visto,  o  vetor  de  posição  da  partícula  i  poder  ser  descrito  por  coordenadas

cartesianas,  da formar i=r i , x
i r i , y

jr i , z
k ,  e  logicamente o vetor  velocidade da partícula i

poderá  ser  escrito  por̇r i= ṙ i , x
iṙ i , y

j ṙ i , z
k .   Assim,  o  termom⋅̈r i pode  ser  reescrito  da

seguinte forma:

m⋅̈r i=
d
d t

m⋅̇r i =
d
d t [ ∂

∂ ṙ i , x
1

2
⋅m⋅ṙ i , x

2⋅i ∂

∂ ṙ i , y
1

2
⋅m⋅ṙ i , y

2⋅j ∂

∂ ṙ i , z
1

2
⋅m⋅ṙ i , z

2⋅k]=
=

d
d t  ∂Ex

∂ ṙ i , x

⋅i
∂Ey

∂ ṙ i , y

⋅j
∂Ez

∂ ṙ i , z

⋅k .

Portanto:

∑
i

N

m⋅̈r i⋅r i=∑
i

N
d
d t  ∂Ex

∂ ṙ i , x

⋅i
∂ Ey

∂ ṙ i , y

⋅j
∂Ez

∂ ṙ i , z

⋅k⋅∑k
S ∂ r i

∂ qk

⋅qk=

=∑
i

N

∑
k

S
d
d t  ∂ Ex

∂ ṙ i , x

⋅i
∂E y

∂ ṙ i , y

⋅j
∂Ez

∂ ṙ i , z

⋅k⋅∂ r i

∂ qk

⋅qk .

O termo ∑
k

S
d
d t  ∂Ex

∂ ṙ i , x

⋅i
∂E y

∂ ṙ i , y

⋅j
∂Ez

∂ ṙ i , z

⋅k⋅∂ r i

∂ qk

pode ser escrito como:
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∑
k

S
d
d t [ ∂ Ex

∂ ṙ i , x

⋅i 
∂ Ey

∂ ṙ i , y

⋅j
∂Ez

∂ ṙ i , z

⋅k⋅∂ r i

∂qk ]−∑k

S

[ ∂E x

∂ ṙ i , x

⋅i
∂ Ey

∂ ṙ i , y

⋅j
∂Ez

∂ ṙ i , z

⋅k]⋅ d
d t  ∂ r i

∂qk
 .

Logo, utilizando duas das relações antes deduzidas:

∑
k

S
d
d t [ ∂ Ex

∂ ṙ i , x

⋅i 
∂ Ey

∂ ṙ i , y

⋅j
∂Ez

∂ ṙ i , z

⋅k⋅∂ ̇r i

∂ q̇k ]−∑k

S

[ ∂Ex

∂ ṙ i , x

⋅i
∂ Ey

∂ ṙ i , y

⋅j
∂Ez

∂ ṙ i , z

⋅k]⋅∂ ̇r i

∂ qk

.

Com ̇r i= ṙ i , x
iṙ i , y

j ṙ i , z
k o  termo

∂ ̇r i

∂ q̇k

fica
∂ ṙ i , x

∂ q̇k

i
∂ ṙ i , y

∂ q̇k

j
∂ ṙ i ,k

∂ q̇k

k .  Assim,  o

termo  ∂Ex

∂ ṙ i , x

⋅i
∂Ey

∂ ṙ i , y

⋅j
∂ Ez

∂ ṙ i , z

⋅k⋅∂ ̇r i

∂ q̇k

fica:

 ∂Ex

∂ ṙ i , x

⋅i
∂E y

∂ ṙ i , y

⋅j
∂ Ez

∂ ṙ i , z

⋅k⋅ ∂ ṙ i , x

∂ q̇k

i
∂ ṙ i , y

∂ q̇k

j
∂ ṙ i , k

∂ q̇k

k =
=
∂Ex

∂ ṙ i , x

⋅
∂ ṙ i , x

∂ q̇k


∂Ey

∂ ṙ i , y

⋅
∂ ṙ i , y

∂ q̇k


∂Ez

∂ ṙ i , z

⋅
∂ ṙ i , z

∂ q̇k

=
∂Ex

∂ q̇k


∂E y

∂ q̇k


∂Ez

∂ q̇k

=
∂ E
∂ qk

.

Portanto:

∑
i

N

∑
k

S

 F i , nvinc⋅
∂ r i

∂ qk

−
d
d t  ∂E

∂ q̇k
 ∂E
∂qk ⋅ qk=0 .

No entanto, os deslocamentos virtuais das coordenadas generalizadas não são dependentes

entre si, como já antes visto. Portanto, a única maneira de se anular a expressão acima, será tendo

cada coeficiente de cada deslocamento virtual igual a 0 (Martins, 2006), então:

∑
i

N

 F i , nvinc⋅
∂ r i

∂qk

−
d
d t  ∂E

∂ q̇k
 ∂E
∂qk =0 .

Na fórmula deduzida possuem-se termos em função da energia cinética, mas não em função

da energia potencial. Porém realizando mais algumas transformações poderá se obter uma fórmula

mais geral  em função da Lagrangiana do sistema, que é a diferença entre a energia cinética e

potencial.

As forças não vinculares da fórmula anterior podem ser divididas em forças derivadas de um

potencial, e forças não conservativas, da seguinte forma:

F i , nvinc=F nc ,i− ∂V i

∂ r i , x

i
∂V i

∂ r i , y

j
∂V i

∂ r i , z

k  ,
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onde F nc,i é a resultante das forças não conservativas não vinculares atuantes na partícula i, e

V i o potencial das forças conservativas atuantes em i. Substituindo na fórmula deduzida, obtém-

se:

∑
i

N

 F nc ,i⋅
∂ r i

∂ qk

−∂V
∂ x

i
∂V
∂ y

j
∂V
∂ z

k⋅∂ r i

∂ qk

−
d
d t  ∂E

∂ qk
 ∂E
∂ qk =0 .

Como r i=r i , x
i r i , y

jr i , z
k :

 ∂V
∂ r i , x

i 
∂V
∂ r i , y

j
∂V
∂ r i , z

k⋅∂ r i , x

∂qk

i
∂ r i , y

∂ qk

j
∂ r i , z

∂qk

k= ∂V
∂ r i , x

⋅
∂ r i , x

∂ qk


∂V
∂ r i , y

⋅
∂ r i , y

∂ qk


∂V
∂ r i , z

⋅
∂ r i , z

∂ qk

=

=
∂V
∂ qk

,

portanto:

∑
i

N

 F nc ,i⋅
∂ r i

∂ qk

−
d
d t  ∂E

∂ q̇k
∂ E−V 

∂ qk =0 .

Mas, como
∂V
∂ q̇k

=0 , ∑
i

N

 F nc ,i⋅
∂ r i

∂ qk

−
d
d t  ∂ E−V 

∂ q̇k
∂ E−V 

∂ qk =0 .

E, finalmente, chamando de L a lagrangiana do sistema, onde L=E−V , obtém-se:

d
d t  ∂ L

∂ q̇k −
∂ L
∂ qk

=∑
i

N

F nc ,i⋅
∂ r i

∂ qk
.

2.6. Energia cinética

Três propriedades,  que serão  antes  abordadas pela  sua importancia  na determinação  da

energia cinética de um corpo rígido, são: a relação entre as velocidades de quaisquer dois pontos do

corpo rígido, a posição do centro de massa do corpo e a matriz de inércia do corpo.

2.6.1.  Relação entre velocidades de um corpo rígido

Como já visto,  a definição de corpo  rígido impõe que dois  pontos quaisquer  do corpo

estejam sempre à mesma distância e assim o corpo como um todo pode possuir rotação em até três

eixos  linearmente  independentes.  Para  tal  vetor  de  rotação  será  aqui  utilizado

w=wx '
i wy'

jwz '
k .

Considere um referencial fixo no espaço (ao qual serão refenciadas posições absolutas) e
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outro fixo a um ponto (C) qualquer  deste corpo (tal referencial caminha junto com C, porém não

roda solidário ao corpo). Todo o resto do corpo irá possuir rotaçãow em torno de C quando se

obervar do refencial móvel. Assim, a velocidade absoluta de dois outros pontos P e O quaisquer

serão:

V P=
d RCP

d t
 V C=w× RCP V C e VO=

d RCO

d t
 VC=w× RCO V C .

Assim, a velocidade relativa entre os pontos P e O será:

V P− VO=w× RCP−w× RCO=w× ROP .

Encontra-se então a velocidade absoluta P em função da velocidade absoluta O:

V P= Vow× ROP .

2.6.2. Posição de centro de massa de um corpo rígido 

O vetor posição do centro de massa de um corpo rígido é definido como:

RGO'=
∑

i

n

mi⋅ RiO '

∑
i

n

mi

=
∑

i

n

mi⋅ RiO '

M
,

onde mi é a massa de uma partícula do corpo rígido de n partículas, RiO ' sua distância ao ponto

de referência e M a massa total  do  sistema.  A importância do centro de massa é descrever  a

aceleração do corpo devido às forças externas nele aplicadas nas suas respectivas direções. Porém, o

centro de massa não tem a capacidade de  descrever a aceleração rotacional devido às distâncias

normais entre o centro de massa e as forças no sistema aplicadas.

Para isso, introduzem-se as matrizes de inércia.

2.6.3. Matriz de inércia de um corpo rígido

A matriz de inércia de um corpo rígido é definida como (onde mi continua sendo a massa

de uma partícula do corpo, exi ' , yi ' e zi '  são as coordenadas cartesianas da partícula em

relação ao refencial adotado):
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[ J ]=∑
i

n mi [
zi '

2yi '
2 −xi '⋅yi ' −xi '⋅zi '

−xi '⋅yi ' xi '
2zi '

2 −yi '⋅zi '

−xi '⋅zi ' −yi '⋅zi ' xi '
2yi '

2] .

As matrizes de inércia possuem a capacidade somente de descrever a aceleração rotacional

do corpo devido às distâncias normais entre o centro de massa e as forças no sistema aplicadas.

Com tais propriedades, será agora  encontrada a energia cinética do sistema com relação a

um refencial fixo. A energia cinética de uma partícula do corpo com relação ao referencial fixo é

dada por:

T i=
mi⋅V i2

2
.

Utilizando um referencial movel, fixo ao corpo em um ponto qualquer O', pode-se descrever

a velocidade de i como sendo:

V i= VO'w× RiO ' ,

onde VO ' é a velocidade do ponto O' eRiO ' o vetor posição do ponto O' à partícula.  Assim, a

energia cinética da partícula será:

T i=
mi⋅ V O'w× RiO '

2

2
.

Como a energia cinética total do corpo é a somatória da energia cinética das partículas,

segue:

T=
∑

i

n

mi⋅ V O'w× RiO '
2

2
=

VO '
2⋅∑

i

n

mi2⋅ V O'⋅w×∑
i

n

mi⋅ RiO '∑
i

n

mi⋅w× RiO ' 
2

2

.

O  termo ∑
i

n

mi⋅ RiO ' pode  ser  reescrito  comoM⋅ RGO' ,  e  se ∑
i

n

mi⋅ w× RiO '
2 for

desenvolvido com coordenadas cartesianas emRiO ' e vetor w=wx '
i wy'

jwz '
k ,  resultará

em (PESCE, 2004):

∑
i

n

mi⋅[wx '
2⋅ y ' 2z '2wy '

2 ⋅x ' 2z '2wz'
2⋅x ' 2y '2−2⋅wx '⋅wy '⋅x '⋅y '−2⋅wx '⋅wz '⋅x '⋅z '−2⋅wy '⋅wz '⋅y '⋅z '] ,
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que também pode ser escrito da forma matricial:

wx w y w z⋅[
∑

i

n

mi⋅zi '
2yi '

2 ∑
i

n

mi⋅−xi '⋅yi '  ∑
i

n

mi⋅−xi '⋅zi ' 

∑
i

n

mi⋅−xi '⋅yi '  ∑
i

n

mi⋅xi '
2zi '

2 ∑
i

n

mi⋅−yi '⋅zi ' 

∑
i

n

mi⋅−xi '⋅zi '  ∑
i

n

mi⋅−yi '⋅zi '  ∑
i

n

mi⋅ xi '
2yi '

2]⋅wx

wy

wz
=

={w}⋅[ J ]⋅{w} .

E assim a energia cinética do sistema resultará em:

T=
VO '

2⋅M2⋅ V O'⋅M⋅w× RGO'{w}⋅[ J ]⋅{w}

2
.

Como no sistema a ser analizado só se possuem duas dimensões (x e y), e considerando

w=wz⋅k=w⋅k e nomeandoJ=∑
i

n

mi⋅x '2y '2 , o termo ∑
i

n

mi⋅ w× Ri ' 
2  resulta em:

∑
i

n

mi⋅ w× Ri ' 
2=∑

i

n

mi⋅w
2⋅x '2y '2=J⋅w2 .

E a energia cinética em duas dimensões fica:

T=
VO '

2⋅M2⋅ V O'⋅M⋅w× RGO'J⋅w2

2
.

2.7. Relação p-V na câmara 

Será abordada nesse trabalho, somente a parte da termodinâmica referente ao processo de

expansão e compressão do ar dentro da câmara de compressão de um compressor aternativo. Dessa

forma, primeiramente será explicada a equação dos gases ideais,  que será inicialmente utilizada

para uma modelagem mais simples, e depois, a equação para processos politrópicos, que serve para

explicar casos reais. Busca-se com isso uma expressão para a pressão da câmara relacionada com o

volume desta.

2.7.1.  Equações  de  Estados  dos  Gases,  Fator  de  Compressibilidade  e  Equação  dos
Gases Perfeitos

Na natureza, observa-se que as propriedades temperatura, pressão e densidade (ou volume
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específico) de um gás não são independentes. Dessa forma, é de grande interesse para a engenharia

relacionar tais propriedades. Uma das formas é variar as propriedades dos gases e medir cada uma

delas,  para  depois  contruir  uma tabela  de propriedades,  para  cada gás.  Pode-se também obter

resultados aproximados para as propriedades através de fórmulas que relacionem as propriedades.

Experimentalmente, foi verificado que ao se abaixar a pressão de qualquer gás, no limite,

quando a pressão teoricamente é  nula,  o valor de
pV
nT

tende a um ponto comum (obtido por

extrapolação, já que não é realmente possível chegar a um valor de pressão nula em um gás). Tal

ponto é chamado de Constante Universal dos Gases, será aqui designado pela letra R e tem o valor

de R=8,314KJ /Kmol⋅K .

O fator de compressibilidade de um gás é definido como Z=
pV

nRT
. Oserva-se que quando

a presão tende a zero, o valor de Z tende a 1. Porém, ao se aumentar a pressão, nos gases reais Z não

é constante, mas sim uma expansão de infinitos termos  ao redor de V ou de p, com coeficientes

dependentes de T (chamados de coeficientes viriais, que corrigem o fator de compressibilidade

considerando as forças de interações entre as moléculas do gás). Tais coeficientes são de difícil

obtenção, provenientes da mecânica estatística (Shapiro, 2006).

Para evitar o problema de da determinação dos coeficientes viriais, muitas fórmulas foram

desenvolvidas por diferentes autores para explicar o  comportamento de um gás que se afasta do

caso ideal. São as chamadas equações de estados dos gases, e são válidas (ou melhor dizendo, são

mais exatas) para determinados intervalos de propriedades do gás. Algumas das mais famosas são:

equação de estados de Van der Waals, equação de Redlich-Kwon e equação de Berthelot. 

Perceba porém, que se Z for considerado constante e igual a 1, obtém-se uma fórmula geral

bastante simplificada para as propriedades dos gases, chamada de Equação dos Gases Perfeitos:

pV=nRT .

Pode-se  expressar  essa  fórmula  também  pela  massa  e  não  pelo  número  de  moles,

adicionando o termo do peso molecular:

pV=
mRT

M

Essa fórmula não considera a interação entre as moléculas do gás, e assim chama-se o gás de
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Gás  Ideal  ou  Gás  Perfeito.  Tal  aproximação chega  bem  perto  da  realidade  quando  o  gás

considerado:

- Tiver pressão baixa relativa à sua pressão crítica, ou;

- Tiver temperatura alta com relação à sua temperatura crítica.

Assim, ao se reorganizar os termos da equação, podemos relacionar a pressão, o volume e a

temperatura de um determinado gás da forma (já que o número de moles de um recipiente não muda

e R é uma constante):

p1V1

T1

=
p2V 2

T 2

=nR .

E assim, quando for considerado um processo isotérmico:

p1V 1=p2V2

2.7.2. Processos Politrópicos

Como já foi  explicado no item anterior,  para se obter uma aproximação mais exata das

propriedades do sistema, não se considerando gases ideais, seria necessário utilizar um  método que

recorra a uma tabela, ou equações de estados.  Felizmente, no caso do gás dentro da câmara de

compressão de um compressor,  o processo pelo qual o gás passa é um  processo especial,  que

permite relacionar facilmente P com V.

Será considerado que a expansão e compressão sofridas dentro da câmara de um compressor

são quase estáticas, isto é cada estado pelo qual a compressão passa pode ser considerado um estado

de equilíbrio. Naturalmente na realidade não é possível um processo quase estático, mas para efeitos

práticos a maioria dos processos de compressão e expansão se aproximam muito de um.

Dessa forma pode se dizer que o processo é politrópico, e obedece a seguinte relação:

p1V 1
n= p2V 2

n=C ,

onde  n  é  uma  constante  que  depende do  gás  e  da  expansão  ou  compressão  (por  exemplo:

temperatura, pressão ou até o calor rejeitado no ciclo).

Fica assim claro o porquê de não se precisar recorrer a métodos mais complicados como as

equações de estado, ou a uma tabela: para relacionar a pressão com o volume em uma compressão

ou expansão politrópica não é necessário saber a temperatura do sistema, bastando saber a pressão e
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o volume do sistema em algum ponto dessa expansão ou compressão.

Para alguns casos especiais, n possui valores previamente conhecidos (aqui só serão tratados

os casos relevantes para um compressor alternativo):

– Quando se considerar o gás como perfeito em um processo isotérmico n será igual a 1.

Observa-se isso também pela fórmula resultante:p1V 1=p2V2 ; 

– Quando  se  considerar o  gás  como  perfeito  e  sob  um  processo  de  expansão  ou

compressão adiabática,  n será igual  a k (coeficiente entre calores específicosCp e

Cv do gás).

Na prática, para poder se obter o valor de n que corresponda ao processo real, é possível

medir a pressão e o volume do gás na entrada e saída e utilizar a equação de processos politrópicos

para determinar n, embora o que mais se faça para a medição da energia fornecida ao gás é medir a

pressão ponto a ponto conforme o deslocamento do pistão e integrar a pressão da câmara pelo seu

volume.

Nesse trabalho, porém, considerar-se-ão duas situações distintas com gases perfeitos: aquela

em que há troca de calor ideal do sistema com o meio ambiente, possuindo-se assim um sistema

isotérmico; e aquela em que não existe troca de calor com o ambiente, caindo no caso de um

processo adiabático. Deve-se deixar claro que o ciclo de um compressor alternativo é tão veloz que

geralmente a troca de calor com o ambiente, por ciclo, é pequena, e assim o processo adiabático se

aproxima mais da realidade. A refrigeração, por aletas, ou por camisas com fluidos refrigerantes

serve apenas para aumentar a troca de calor com o ambiente para diminuir o trabalho que deve ser

entregue ao fluido, embora o processo continue próximo do adiabático (Dossat, 2001).

2.8. Modelo de Mancais hidrodinâmicos curtos

Quando se tem o interesse na análise da lubrificação entre as diversas partes do

sistema, é necessário se considerar o mancal do sistema, assim como as diversas juntas,

não mais rígidos, e sim os efeitos das excentricidade e do filme de óleo presentes. Um

diagrama simplificado de um mancal não rígido pode ser observado na Figura 5.

A lubrificação das diversas juntas e mancais do sistema abaixa significativamente o

coeficiente de atrito entre as partes com movimento relativo, reduzindo assim também a

geração  de  calor  em  tais  partes.  Além  disso,  existe  também  uma  redução  local  de

temperatura, devido ao efeito refrigerador causado pelo lubrificante no local. Outro efeito

proveniente da lubrificação é o aumento da vida útil  do sistema, ainda mais quando a
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lubrificação é considerada mista ou hidrodinâmica, como já visto antes, já que o contato

entre os diversos componentes rígidos é menor, ou inexistente.

Kirk e Gunter Jr. (1970) realizam uma revisão bibliográfica em seu trabalho sobre

os diversos autores que estudaram o campo de pressão em mancais hidrodinâmicos. Eles

também derivam a  equação  de  Reynolds  da  equação  de  Navier  Stokes  para  fluidos

incompressíveis e, em seguida, utilizam a hipótese de mancais curtos para a comparação

com mancais finitos.

Primeiramente  eles  utilizam  coordenadas  rotativas  e  depois  realizam  uma

transformação de coordenadas, para coordenadas fixas, chegando na equação:

1
6
⋅[ 1

R2⋅
∂

∂  h3

µ
⋅
∂P
∂  ∂

∂ z h3

µ
⋅
∂P
∂ z ]=b j ⋅

∂h
∂

2⋅
∂ h
∂ t

,

onde   é  o ângulo  medido a  partir  do eixo x  positivo,  no sentido horário,  e  h  é  a

espessura do filme de óleo.

Quando considerado o modelo de mancal infinitamente longo, podem ser ignorados

os efeitos de gradiente de pressão e fluxo de fluido em z, resultando em:

1

6⋅R2⋅
∂

∂  h3

µ
⋅
∂P
∂ =b j ⋅

∂ h
∂

2⋅
∂h
∂ t

,

e quando considerado o modelo de mancal curto, pode-se dizer o mesmo, mas na direção

radial, resultando em:

1
6
⋅
∂

∂ z h3

µ
⋅
∂P
∂ z =b j ⋅

∂ h
∂ 

2⋅
∂h
∂ t

.

Kirk  e  Gunter  Jr.  (1970)  mostram  também  que  o  erro  que  se  comete  pela
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aproximação de mancal curto é muito pequeno a partir de mancais com diâmetro duas

vezes  maior  que  o  comprimento,  e  também  que  tal  erro  é  maior  conforme  a

excentricidade aumenta.

Zachariadis (1998) propõe a integração da equação para mancais hidrodinâmicos

curtos, chegando assim às forças que surgem no mancal. Dessa forma, as forças que

surgem no eixo x e y, respectivamente, propostas pelo modelo são:

F x=
−µ⋅R⋅L3

c2 ⋅{[−2⋅̇⋅⋅⋅a⋅cos−4⋅2
⋅sin

4⋅a4 ]̇⋅[ 4⋅⋅a⋅cos−⋅b⋅sin

2⋅a5 ]} ;

F y=
−µ⋅R⋅L3

c2
⋅{[−2⋅̇⋅4⋅2

⋅cos⋅⋅a⋅sin
4⋅a4 ]̇⋅[⋅b⋅cos4⋅⋅a⋅sin

2⋅a5 ]} ,

onde a=1−20,5 e b=12⋅2 .

Como  a  excentricidade  que  existirá  entre  o  mancal  e  o  eixo  é  da  ordem  de

micrômetros, percebe-se que tal excentricidade pouca influencia trará sobre a posição do

pistão. Porém, é fundamental poder simular tal excentricidade para saber como funciona a

vibração do conjunto e assim conseguir dimensionar os componentes do pistão de forma

a otimizar a dinâmica do compressor, assim como determinar o atrito existente no mancal

ou junta.

A fórmula do atrito existente em um mancal hidrodinâmico proposta por , considera

ambos aspectos de atrito entre as asperezas dos elementos do mancal, assim como a

lubrificação hidrodinâmica do sistema:

Tvisc= f m⋅kn⋅C⋅−tr ⋅⋅sgn
L⋅µ⋅R2

C
⋅

2⋅
1−20,5⋅ ,

onde f m é o coeficiente de atrito entre os materiais, kn  é a dureza das asperidades,

tr é a excentricidade limite  entre  lubrificação mista  e  hidrodinâmica,  e sgn é o

sinal de  .

Percebe-se que quando a lubrificação for somente hidrodinâmica e não mista, o

primeiro termo da equação desaparece, resultando em:

Tvisc=
L⋅µ⋅R2

C
⋅

2⋅
1−20,5⋅ ,

que é a fórmula que será usada na modelagem do sistema, por simplificação (ou seja,

considera-se que a rugosidade é desprezível, embora isso não seja verdade em muitos

casos), para se entender os efeitos somente da lubrificação hidrodinâmica do sistema.
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3. Modelagem do Sistema

Para a modelagem do sistema, será inicialmente utilizado um sistema simplificado, no qual

serão obtidas as equações diferenciais do sistema. Em seguida, e por passos, serão introduzidos

novos conceitos e o sistema a princípio simplificado será trazido mais próximo a um compressor

alternativo real.

3.1. Sistema 1: pistão-manivela, com torque externo  linear

Nessa primeira  modelagem,  considera-se que no  sistema somente  o  pistão  e  o  volante

possuem massa,  e que o torque fornecido pelo motor  é  linearmente dependente da velocidade

angular do volante (começa do máximo e chega a zero na rotação de operação ). A figura  6

ilustra o sistema:

Primeiramente acham-se as relações de vínculo entre as cordenadas e x em função da

coordenada  . Iniciando com  , do sistema tem-se a relação:

e·sin=l ·sinsin=
e
l

·sin=r⋅sin .

E, portanto:

1−sin2=1− r⋅sin2=cos2cos=1−r 2⋅sin2 ,
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Figura 6: Sistema 1



(somente é verdade porque nunca estará no 2º ou 3º quadrante, portantocos será sempre

positivo).

Derivando obtem-se:

̇⋅sin=
r2⋅̇⋅sin⋅cos

1−r 2⋅sin2
̇=

r 2⋅̇⋅sin⋅cos

1−r2⋅sin2
⋅

1
r⋅sin

=
r⋅̇⋅cos

1−r 2⋅sin2
.

Derivando novamente:

̈=̈⋅
r⋅cos

1−r 2⋅sin2
̇2⋅

−r⋅sin

1−r 2⋅sin2
−

r 3⋅cos2⋅⋅sin
1−r 2⋅sin23/2

.

E tornando a cordenada x em função de φ:

x=−e⋅cos l⋅cos=−e⋅cosl⋅1−r 2⋅sin2 .

Derivando no tempo:

ẋ=e⋅̇⋅sin−l⋅̇⋅sin=e⋅̇⋅sin−
l⋅r 2⋅̇⋅sin⋅cos

1−r 2⋅sin2
.

Derivando novamente:

ẍ=e⋅̈⋅sine⋅̇2⋅cos−l⋅̈⋅sin−̇2⋅cos=

=̈⋅e⋅sin−
l⋅r 2⋅sin codtcos

1−r 2⋅sin2 ̇2⋅e⋅cos
l⋅r 2⋅sin2−cos2

1−r 2⋅sin2
−

l⋅r 4⋅sin2⋅cos2

1−r 2⋅sin23/2  .

Utilizam-se agora essas relações para se achar a energia cinética do sistema em função de

  que será a coordenada generalizada das equações de Lagrange. A energia cinética no volante

é:

Tv=
J v⋅̇

2

2
.

E a energia Cinética do Pistão:

T p=
mp⋅ẋ2

2
=

mp

2
⋅e⋅̇⋅sin−

l⋅r 2⋅̇⋅sin⋅cos

1−r 2⋅sin2 
2

.

Portanto a energia cinética total do sistema é:
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T=T vT p=
1
2
⋅[J v⋅̇

2mp⋅e⋅̇⋅sin−
l⋅r 2⋅̇⋅sin⋅cos

1−r 2⋅sin2 
2

] .

Utilizam-se as equações de Lagrange para se obterem as equações diferenciais do sistema:

d
d t  ∂ L

∂ q̇k −
∂ L
∂ qk

=∑
i

N

F nc ,i⋅
∂ r i

∂ qk
.

 Sabendo que a Lagrangiana do sistema é a diferença entre a energia cinética e potencial do

sistema:

L=T−U , mas comoU=0 :

 L=T=
1
2
⋅[ J v⋅̇

2mp⋅e⋅̇⋅sin−
l⋅r 2⋅̇⋅sin⋅cos

1−r 2⋅sin2 
2

] .

Como a única coordenada generalizada, que descreve todo o sistema é   , tem-se:

d
d t  ∂ L

∂ ̇ − ∂ L
∂

=∑
i

N

F nc ,i⋅
∂ r i

∂
.

Conhecem-se também os esforços externos, ou seja, a curva de torque do motor acionador
do pistão, que é dada por:

∑
i

N

F nc ,i⋅
∂ r i

∂
=T motor=T 0−

T0


⋅̇ .

Portanto calculando-se todas as derivadas e reorganizando os termos, obtem-se:

̈=

T0−
T0


⋅̇−̇2⋅mp⋅[e⋅sin−

l⋅r2⋅sin⋅cos

1−r2⋅sin21/2⋅e⋅cos
l⋅r 2⋅sin2−cos2

1−r2⋅sin21/2
−

l⋅r 4⋅sin2⋅cos2

1−r 2⋅sin23/2 ]
[J vmp⋅e⋅sin−

l⋅r2⋅sin⋅cos
1−r2⋅sin21/2

2

]
.

Renomeiam-se os seguintes termos:

A=e⋅sin−
l⋅r2⋅sin⋅cos
1−r2⋅sin21/2

, e;

B=e⋅cos
l⋅r 2⋅sin2−cos2

1−r 2⋅sin21/2
−

l⋅r 4⋅sin2⋅cos2

1−r 2⋅sin23/2
.

Repare que A é o termȯx  dividido por ̇ , e B é a derivada de A em . Obtem-se
assim a seguinte equação:
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̈=
T 0−

T 0


⋅̇−̇2⋅mp⋅ A⋅B

 Jvmp⋅A2
.

E assim o seguinte diagrama de blocos no SCICOS (figura 7):

Repare que nele foram utilizados os termos A e B para simplificação do diagrama, dentro de

dois blocos “Mathematical Funcion” separados. Do diagrama obtem-se não somente ̇ e  ,

mas também ̇ e x .

3.2. Sistema 2: Sistema 1 considerando a pressão do  ar, gás perfeito e isotérmico

Considere agora também a pressão do ar do cilindro em que o pistão se move. Porém, por

simplicidade, considere inicialmente que o ar é um gás perfeito e que o sistema é isotérmico. Dessa

forma, obtem-se o sistema representado pela figura 8:
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Figura 7: Diagrama de blocos do SCICOS para o sistema 1



O sistema, continua sendo composto por:  pistão,  biela e  manivela, mas agora existe mais

uma força externa, imposta pela pressão do ar na câmara de compressão.

O  volume  da  câmara  é:  V=VcilindroV morto=
e l−x⋅D2⋅

4
Vmorto .  Como  está  se

considerando que o ar é um gás perfeito, o diagrama de um ciclo de pressão-volume da câmara

possuirá o seguinte aspecto (figura 9):

38

Figura 8: Sistema 2



A pressão do gás da câmara durante a fase de sucção será constante e igual à pressão de

abertura da válvula de admissão e a pressão na fase de descarga também será constante, mas igual à

pressão  de  abertura  da  válvula  de  escape.  Já  nas outras  duas  fases,  a  pressão  variará

hiperbolicamente com o volume da câmara como dita a equação dos gases perfeitos para o caso

isotérmico: p1V 1=p2V2=n⋅R⋅T . Assim são obtidas as seguintes fórmulas para pressão do ar na

câmara:

Psucção=Pmin ;

Pdescarga=Pmax ;

Pcompressão=
mcompressão⋅R⋅Toperação

M ar⋅V
=

mcompressão⋅R⋅Toperação

M ar⋅[ el−x⋅D2⋅

4
V morto] , e;

Pexpansão=
mexpansão⋅R⋅T operação

M ar⋅V
=

mexpansão⋅R⋅Toperação

M ar⋅[ el−x⋅D2⋅

4
V morto] .

Para se descobrir a massa na câmara durante as fases de compressão e expansão, utilizam-se

as condições de pressão e volume já conhecidos dos pontos 2 e 4 do diagrama da figura 4 (com a

temperatura de operação também já conhecida), chegando-se assim nos seguintes valores de massa
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Figura 9: Diagrama P-V do ar na câmara (gás perfeito)



de ar na câmara:

mcompressão=
M ar⋅Pmin⋅V4

R⋅Toperação

=
M ar⋅Pmin⋅

2⋅e⋅D2⋅
4

Vmorto

R⋅Toperação

, e;

mexpansão=
M ar⋅Pmax⋅V 2

R⋅T operação

=
M ar⋅Pmax⋅V morto

R⋅Toperação
.

Ao se substituir nas equações de pressão de compressão e expansão, obtém-se:

Pcompressão=
Pmin⋅V4

V
=

Pmin⋅
2⋅e⋅D2⋅

4
V morto

e l−x⋅D2⋅

4
Vmorto

, e;

Pexpansão=
Pmax⋅V 2

V
=

Pmax⋅V morto

el−x⋅D2⋅

4
V morto

.

O resultado das expressões é lógico, pois considerando que durante a compressão ou durante

a expansãoPV=
mRT
M

=cte ,  pode-se utilizar uma condição de
Pi V i conhecida em qualquer

instante para definir o sistema, não precisando deixar todo o termo em função de
mRT
M

.

Portanto, a força do ar sobre o pistão será:

F ar , sucção=Psucção−Patm⋅A=
Pmin−Patm⋅⋅D2

4
;

F ar , descarga=Pdescarga−Patm⋅A=
Pmax−Patm⋅⋅D2

4
;

F ar , compressão=Pcompressão−Patm⋅A=
Pmin⋅

2⋅e⋅D2⋅
4

Vmorto

el−x
4⋅V morto

D2⋅

−
Patm⋅⋅D2

4
, e;

F ar , expansão=Pexpansão−Patm⋅A=
Pmax⋅V morto

el−x
4⋅V morto

D2⋅

−
Patm⋅⋅D2

4 .

Os esforços externos do novo sistema são:
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∑
i

N

F nc ,i⋅
∂ r j

∂
=T0−

T0


⋅̇F ar−i ⋅

∂ x
∂

i  .

Com x=−e⋅cos l⋅1− r⋅sin ² , a equação fica:

∑
i

N

F nc ,i⋅
∂ r j

∂
=T0−

T0


⋅̇F ar −i ⋅

−e⋅cosl⋅1−r⋅sin ²


i =

=T0−
T 0


⋅̇−F ar⋅e⋅sin−

l⋅r 2⋅sin⋅cos

1−r 2⋅sin2  .

E a equação diferencial do sistema é, portanto:

̈=

T 0−
T 0


⋅̇−e⋅sin−

l⋅r 2⋅sin⋅cos

1−r 2⋅sin2 [F ar−̇2⋅mp⋅e⋅cos
l⋅r 2⋅sin2−cos2

1−r 2⋅sin21/2
−

l⋅r 4⋅sin2⋅cos2

1−r 2⋅sin23/2 ]
[Jvmp⋅e⋅sin−

l⋅r 2⋅sin⋅cos

1−r 2⋅sin21/2
2

]
.

Com F ar já antes expresso. Usando a mesma nomenclatura de A e B de anteriormente:

A=e⋅sin−
l⋅r2⋅sin⋅cos
1−r2⋅sin21/2

, e;

B=e⋅cos
l⋅r 2⋅sin2−cos2

1−r2⋅sin21/2
−

l⋅r 4⋅sin2⋅cos2

1−r2⋅sin23/2
;

obtém-se a seguinte equação:

̈=
T 0−

T 0


⋅̇−A⋅F ar̇2⋅mp⋅B

J vmp⋅A2
.

O diagrama de blocos do sistema 2 no SCICOS é o seguinte:
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Repare que neste novo diagrama de blocos aparece um novo termo referente à força do ar.

Tal  termo também é medido no MScope para poder se analisar a modelagem do ar  dentro da

câmara.

3.3. Sistema 3: pistão-biela-manivela e esforços ex ternos do sistema 2

Considere  agora  que  a  biela  do  sistema  também  possua  massa.  O  novo  sistema  é

representado pela figura 11:
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Onde  J b é o momento de inércia da biela com relação ao ponto comum entre biela e

pistão, e a é a distância entre esse ponto e o centro de massa da biela.

Novamente a energia cinética do volante será:Tv=
J v⋅̇

2

2
, e a energia cinética do pistão

será: T p=
mp⋅ẋ2

2
=

mp

2
⋅e⋅̇⋅sin−

l⋅r 2⋅̇⋅sin⋅cos

1−r2⋅sin2 
2

.

Esses dois elementos possuem energia cinética elementar, pois o pistão possui movimento

puramente  linear  e  o  volante  possue  movimento  puramente  rotativo.  Já  a  biela  possui  uma

composição de movimento rotativo e linear. Recorrendo à forma geral de energia cinética para caso

bidimensional (já antes deduzida):

T=
VO '⋅M2⋅ VO '⋅M⋅w× RGO'J⋅w2

2
.

Tomando como referencial móvel o ponto de contato da biela com o pistão (que não é o

centro de massa da biela), a energia cinética da biela fica:

Tb=
1
2
⋅mb ẋ2mb⋅̇x⋅

̇×[a⋅sinj a⋅cosi ]
1
2

J b̇
2

.

Como ̇x= ẋ⋅i  e ̇=̇⋅−k  , e energia cinética da biela é:
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Tb=
1
2
⋅mb ẋ2mb⋅ẋ⋅̇⋅a⋅sin

1
2

Jb ̇
2

.

E assim a energia cinética total do sistema é:

T=T pT bT v=
1
2
⋅mp⋅ẋ2

1
2
⋅mb ẋ2mb⋅ẋ⋅̇⋅a⋅sin

1
2

J b ̇
2

1
2
⋅J v⋅̇

2
.

A energia potencial do sistema é nula, portanto a Lagrangiana do sistema fica:

U=0L=T−U =T .

Para simplificação serão usados as seguintes nomenclaturas (A e B continuam sendo os

mesmos termos de antes, e serão adicionados dois novos termos C e D, onde D é a derivada de C

em  e C é o termo̇ dividido por ̇ ):

A=e⋅sin−
l⋅r2⋅sin⋅cos
1−r2⋅sin21/2

;

B=e⋅cos
l⋅r 2⋅sin2−cos2

1−r2⋅sin21/2
−

l⋅r 4⋅sin2⋅cos2

1−r2⋅sin23/2
;

C=
r⋅cos

1−r2⋅sin2 , e;

D=
−r⋅sin

1−r 2⋅sin21/2


r 3⋅sin⋅cos
1−r 2⋅sin23/2

.

Utilizando as equações de Lagrange:

d
d t  ∂ L

∂ ̇ − ∂ L
∂

=∑
i

N

F nc ,i⋅
∂ r i

∂
;

calculando as derivadas e reorganizando termos, obtém-se:

̈=
∑

i

N

F nc , i⋅
∂ r i

∂
−̇

2
⋅[mp A⋅BJ b⋅C⋅Dmb⋅ A⋅BB⋅C⋅a⋅r⋅sinA⋅D⋅a⋅r⋅sinA⋅C⋅a⋅r⋅cos ]

mp⋅A
2
J vJb⋅C

2
mb⋅ A

2
2⋅A⋅C⋅a⋅r⋅sin 

.

Os esforços externos do sistema 3 são os mesmos do sistema 2, portanto:

∑
i

N

F nc ,i⋅
∂ r j

∂
=T0−

T0


⋅̇−F ar⋅e⋅sin−

l⋅r 2⋅sin⋅cos

1−r 2⋅sin2  .

E assim a equação diferencial do sistema fica:
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̈=
T 0−

T 0


⋅̇−F ar⋅A−̇2⋅[mp A⋅BJb⋅C⋅Dmb⋅A⋅BB⋅C⋅a⋅r⋅sinA⋅D⋅a⋅r⋅sinA⋅C⋅a⋅r⋅cos  ]

mp⋅A2J vJb⋅C
2mb⋅A

22⋅A⋅C⋅a⋅r⋅sin
,

onde a F ar é novamente separada em 4 termos:

F ar , sucção=Psucção−Patm⋅A=
Pmin−Patm⋅⋅D2

4
;

F ar , descarga=Pdescarga−Patm⋅A=
Pmax−Patm⋅⋅D2

4
;

F ar , compressão=Pcompressão−Patm⋅A=
Pmin⋅

2⋅e⋅D2⋅
4

Vmorto

el−x
4⋅V morto

D2⋅

−
Patm⋅⋅D2

4 , e;

F ar , expansão=Pexpansão−Patm⋅A=
Pmax⋅V morto

el−x
4⋅V morto

D2⋅

−
Patm⋅⋅D2

4 .

O diagrama de blocos do sistema 3 está mostrado na figura 12:

Repare que agora, como as equações ficaram relativamente mais compridas, foi  usada a
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função de “Super-Block” do Scicos para implementar a equação diferencial do sistema. Assim, os

termos A, B, C e D, assim como as variáveis e ̇ , o torque do motor e a força do ar são as

entradas, e a saída é̈ . Assim como antes, são medidos ̇ ̇ , x e F ar .

Foi  usada  a  função  “Super-Block”  por  esta  apresentar  vantagem  na  visualização  da

expressão matemática com relação à função “Mathematical Funcion”, sendo assim possível também

alterar partes da expressão mais facilmente (se deu preferência à “Mathematical Function” somente

nos  casos  de pequenas  partes  da  expressão que  não poderiam ser  implementadas  pela  função

“Product”. O diagrama de blocos do Super-Bloco é:

3.4.  Sistema  4:  pistão-biela-manivela  com  pressão  d o  ar,  considerando  gases
perfeitos e sistema adiabático

O sistema 4 é bem semelhante ao sistema 3. Ao se alterarem as características do ar, fica

evidente que somente a força externa proveniente da pressão do ar que se alterará, e dessa forma as

equações diferenciais serão as mesmas do sistema 3, com F ar ligeiramente diferente.

Como já foi  explicado anteriormente,  quando o sistema for considerado, ainda com gás

perfeito na câmara de compressão, mas agora em um sistema adiabático e não mais istotérmico, a
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Figura 13: Super Bloco do sistema 3



equação que relaciona a pressão da câmara com o volume será: p1V 1
k= p2V 2

k=C , onde k é a

relação entre os calores específicos do ar a pressão constanteCp e a volume constanteCv .

O valor de k varia conforme a temperatura do gás varia, que é o nosso caso (lembre-se que

agora possuímos um sistema adiabático,  e não mais isotérmico).  Porém, a variação dentro das

temperaturas de operação são relativamente pequenas. Para se ter uma idéia, o valor de k para o ar a

27C é de  1,400; já para a temperatura de 227 C o valor de k é 1,387. Dessa forma, o sistema será

simulado considerando k  constante e para alguns valores diferentes de k,  para assim poder-se

comparar  tais valores (e saber o quanto aproximadamente o sistema desvia de um real)  e não

precisar se recorrer a métodos mais complicados.

Já sabemos, da modelagem do sistema 2, que o volume da câmara será:

V=VcilindroV morto=
e l−x⋅D2⋅

4
Vmorto

As pressões de descarga e sucção continuarão igual às anteriores:

Psucção=Pmin ;

Pdescarga=Pmax .

Porém, as pressões de compressão e de expansão terão o termo do volume elevado a k, e

ficarão portanto:

Pcompressão=
Pmin⋅V4

k

V k =

Pmin⋅2⋅e⋅D2⋅
4

Vmorto
k

[ el−x⋅D2⋅
4

V morto]
k ;

Pexpansão=
Pmax⋅V 2

k

V k =
Pmax⋅V morto

k

[ el−x⋅D2⋅

4
V morto]

k .

Logo, a força do ar, para as quatro etapas diferentes de um ciclo do compressor, será:

F ar , sucção=Psucção−Patm⋅A=
Pmin−Patm⋅⋅D2

4
;
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F ar , descarga=Pdescarga−Patm⋅A=
Pmax−Patm⋅⋅D2

4
;

F ar , compressão=Pcompressão−Patm⋅A= Pmin⋅ 2⋅e⋅D2⋅
4

Vmorto
k

[ el−x⋅D2⋅

4
V morto]

k−Patm⋅⋅D2

4
, e;

F ar , expansão=Pexpansão−Patm⋅A=
Pmax⋅V morto

k

[ el−x⋅D2⋅
4

V morto]
k−Patm⋅⋅D2

4 .

3.5. Sistema 5: pistão-biela-manivela, com torque e xterno linear e mancal não rígido

Nesta modelagem, o mancal onde o volante está apoiado não será mais considerado rígido.

Agora seguirá o modelo de mancal não rígido curto anteriormente abordado. Desta forma, o novo

sistema seguirá o diagrama da figura (14):

Nesse novo sistema, temos agora duas variáveis a mais, que são X v e Yv . Dessa forma,

como pode ser observado da figura, o centro do volante não mais estará posicionado na origem, o

que gerará a excentricidade com relação ao seu mancal.  Foi incluída também a distância b, do

centro de gravidade do volante (que fica na reta entre o centro geométrico do volante e o ponto de

contato com a biela) até o centro geométrico do volante. Repare que o ângulo foi invertido por
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conveniência, para quė se torne a mesma velocidade angular que da teoria de mancais

curtos  e facilitar  as operações algébricas.  As  forças  provenientes da excentricidade do  mancal

exercidas no volantes estão esquematizadas na figura (15):

E como já visto antes, as forçasF x e F y serão:

F x=
−µ⋅R⋅L3

c2
⋅{[−2⋅̇⋅⋅⋅a⋅cos−4⋅2

⋅sin
4⋅a4 ]̇⋅[ 4⋅⋅a⋅cos−⋅b⋅sin

2⋅a5 ]} ;

F y=
−µ⋅R⋅L3

c2
⋅{[−2⋅̇⋅4⋅2

⋅cos⋅⋅a⋅sin
4⋅a4 ]̇⋅[⋅b⋅cos4⋅⋅a⋅sin

2⋅a5 ]} ,

com a=1−20,5 e b=12⋅2 e =̇ . 

Serão descobertas agora as novas relações de vínculo entre as cordenadas e xP=xB

em função das coordenadas , xv e yv . Iniciando com  , do sistema tem-se a relação:

e·sinyv=l ·sinsin=
e⋅sinyv

l
.

E, portanto:

1−sin2=1−e⋅sinyv

l 
2

=cos2cos=1− e⋅sinyv

l 
2

,

(somente é verdade porque nunca estará no 2º ou 3º quadrante, portantocos será sempre

positivo).

Já xP e xB serão:

xP=xB=xv−e⋅cosl⋅cos=xv−e⋅cos l 2−e⋅sinyv
2 .

A energia cinética da biela e do pistão serão iguais àquelas do sistema 3 e 4, e portanto:
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Figura 15: Forças do mancal no volante
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Tb=
1
2
⋅mb ẋB

2mb⋅ẋb⋅̇⋅a⋅sin
1
2

J b ̇
2

e T p=
mp⋅ẋP

2

2
.

Já a energia cinética do volante não será mais a mesma, pois agora ele possui  energia

cinética  rotacional  e translacional.  Recorrendo à fórmula geral  de enérgia  cinética para corpos

rígidos em duas dimensões:

T=
VO '⋅M2⋅ VO '⋅M⋅w× RGO'J⋅w2

2
,

observa-se que a energia cinética do volante resulta em:

Tv=
1
2
⋅mv⋅ ẋv

2 ẏv
2mv⋅ ̇xv ̇yv⋅̇×[b⋅sinj −b⋅cosi ]

1
2

J v̇
2

,

portanto:

Tv=
1
2
⋅mv⋅ ẋv

2 ẏv
2mv⋅ ẋv⋅̇⋅b⋅sin ẏv⋅̇⋅b⋅cos

1
2

J v̇
2

.

Usando Lagrange, obtém-se as equações diferenciais do sistema 5:

̈=

[ D3F y⋅
A1

A3

−D1−T

C3⋅
A1

A3

−C1 ]⋅C2⋅
A1

A2

−C1−D2F x⋅
A1

A2

D1T

[ B3⋅
A1

A3

−B1

C3⋅
A1

A3

−C1]⋅C2⋅
A1

A2

−C1−B2⋅
A1

A2

B1

;

ẍv=

[ D3F y⋅
B1

B3

−D1−T

C3⋅
B1

B3

−C1 ]⋅C2⋅
B1

B2

−C1−D2F x⋅
B1

B2

D1T

[ A3⋅
B1

B3

−A1

C3⋅
B1

B3

−C1]⋅C2⋅
B1

B2

−C1−A2⋅
B1

B2

A1

, e;
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ÿv=

[ D3F y⋅
A1

A3

−D1−T

B3⋅
A1

A3

−B1 ]⋅B2⋅
A1

A2

−B1−D2F x⋅
A1

A2

D1T

[C3⋅
A1

A3

−C1

B3⋅
A1

A3

−B1 ]⋅B2⋅
A1

A2

−B1−C2⋅
A1

A2

C1

,

com termos A1 a D3 :

A1=mv⋅b⋅sinmBmP⋅E3
e⋅sin yv

l
⋅

mB⋅a⋅e⋅cos

E5
;

A2=mvmBmP ;

A3=mBmP ⋅E4
mb⋅a

E5

⋅
e⋅sinyv

l
;

B1=J vJ B⋅
e⋅cos

E5


2

mBmPE3⋅[e⋅sin−
e⋅cos⋅e⋅sinyv

E5
]...

...mB⋅a⋅[ E3⋅e⋅cos
E5

⋅
e⋅sin yv

l


e⋅cos
E5

⋅
e⋅sin yv

l
⋅e⋅sen−

e⋅cos⋅e⋅sin yv

E5
] ;

B2=mv⋅b⋅sinmPmP⋅[e⋅sin−
e⋅cos⋅e⋅sinyv

E5
]mb⋅a⋅e⋅cos

E5

⋅e⋅sinyv

l  ;

B3=−mv⋅b⋅cos
J b⋅e⋅cos

E5
2 mBmP⋅E4⋅[e⋅sin−

e⋅cos⋅e⋅sinyv

E5
]...

...mB⋅a⋅[ E4⋅e⋅cos
E5

⋅
e⋅sinyv

l
e⋅sin−

e⋅cos⋅e⋅sinyv

E5
⋅ 1

E5

⋅
e⋅sinyv

l ] ;

C1=−mv⋅b⋅cos
Jb⋅e⋅cos

E5
2 −

mBmP⋅E3⋅e⋅sin yv

E5

mb⋅a⋅[ E3

E5

⋅
e⋅sin yv

l
−

e⋅cos⋅e⋅sin yv
2

E5
2⋅l ] ;

C2=−mBmP⋅
e⋅sinyv

E5


mB⋅a

E5

⋅
e⋅sinyv

l
;

C3=mv−mBmP⋅
e⋅sinyv

E5

⋅E4
Jb

E5
2
mB⋅a⋅[ E4

E5

⋅
e⋅sinyv

l
−
e⋅sinyv

2

E5
2⋅l ] ;

D1=−{JB⋅e⋅cos
E5

⋅E6mbmp⋅E3⋅E7mB⋅a⋅[ E3⋅E6⋅e⋅sin yv 

l


E3⋅E2⋅e⋅̇⋅cos ẏv

l ]}...

...−mB⋅a⋅[ e⋅cos
E5

⋅
E7⋅e⋅sinyv

l


e⋅cos
E5

⋅
E1⋅e⋅̇⋅cos ẏv

l
−

E1⋅E2⋅e⋅cos

l ] ;
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D2=−{mv⋅̇
2
⋅b⋅cosmBmP⋅E7mb⋅a⋅[E6⋅e⋅sinyv

l E2⋅e⋅̇cos ẏv

l ]} ,e ;

D3=−mB⋅a⋅[E4⋅E6⋅e⋅sinyv

l E4⋅E2⋅ e⋅̇cos ẏv

l  E7

E5

⋅
e⋅sinyv

l ]...

...−mB⋅a[ E1

E5

⋅
e⋅̇cos ẏv

l
−

E1⋅E2

l ]−[mv⋅̇
2⋅b⋅sin

J b⋅E6

E5

mBmP⋅E7⋅E4] ,

e os termos deE1 a E7 :

E1= ẋve⋅̇⋅sin−
e⋅sinyv⋅e⋅̇⋅cos ẏv

 l 2−e⋅sinyv
20.5 ;

E2=
e⋅̇⋅cos ẏv

 l 2−e⋅sinyv
20.5 ;

E3=e⋅sin−
e⋅sinyv⋅e⋅cos

l 2−e⋅sinyv
20.5 ;

E4=
−e⋅sinyv

 l 2−e⋅sin yv
20.5 ;

E5=l 2−e⋅sinyv
20.5 ;

E6=

−e⋅̇2⋅sin⋅l 2−e⋅sinyv
20.5

e⋅̇⋅cos ẏv
2⋅e⋅sinyv

l 2−e⋅sinyv
20.5

l 2−e⋅sin yv
2

, e;

E7=e⋅̇2⋅cos−

[e⋅̇⋅cos ẏv
2−e⋅̇2⋅sin⋅e⋅sinyv ]⋅ l 2−e⋅sin yv

20.5
e⋅̇⋅cos ẏv 

2⋅e⋅sin yv
2

 l2−e⋅sin yv 
20.5

l 2−e⋅sin yv
2

.

3.6. Sistema 6: pistão-biela-manivela, com torque e xterno linear e 3 mancais não

rígidos

O sistema  6,  e  os  sistemas  posteriores,  mais  complexos,  serão  simulados  no  software

ADAMS, da MSC, que permite uma flexibilidade maior  na alteração de todo o sistema.  Será

realizada  uma comparação entre  tal  sistema e  o  sistema 5,  para  a  validação da utilização  do

software. Tal sistema, pode ser observado na Figura 16:

52



Percebe-se que nesse sistema foram adicionadas as variáveis X 2 , X3 , Y2 e Y3 ,

que exprimem a excentricidade entre os pontos de contato da biela com o volante, e da biela com o

pistão. Os índices 1, 2 e 3, representam os mancais hidrodinâmicos entre o mancal do sistema e o

volante, entre o volante e a biela, e entre a biela e o pistão, respectivamente.

Não é  necessária  a  dedução das  equações  diferenciais  do sistema para  a  simulação do

sistema utilizando o software ADAMS. O arquivo do modelo construído está anexo em mídia

digital que se encontra junto a este trabalho.

3.7.  Sistema  7:  pistão-biela-manivela  com  pressão  d o  ar,  considerando  gases

perfeitos e sistema adiabático, com torque externo proveniente de um motor

elétrico de indução monofásico e 3 mancais não rígi dos

No sistema 7 a pressão na câmara de compressão volta a estar presente e agora ao invés de o

acionamento ser feito por um motor teórico, é realizado por um motor real, elétrico, de indução,

monofásico. O motor escolhido foi o Steel Motor NEMA 56 de 0,18kW (categoria N) da Weg, por

possuir potência similar àquela que foi utilizada nos sistemas anteriores. Os pontos tabelados de

torque para tal motor são: 

– Torque inicial: 1,5Nm;

– Torque máximo: 1,75Nm;
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Figura 16: Sistema 6



– Torque nominal: 0,5Nm (à rotação de 3480 rpm).

A curva do torque pela rotação de motores da categoria N da Weg pode ser vista na Figura

17:

A partir da curva de torque por rotação do motor, e de alguns pontos tabelados é possível

construir, usando a regra de três, uma curva aproximadora para o motor específico a ser utilizado.

Tal curva pode ser encontrada na Figura 18:
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Figura 17: Curvas de Torque x Rotação para as diferentes categorias de
motores da Weg

Fonte: Catálogo de Motores Elétricos - Baixa Tensão (Mercado Brasil)
da Weg



No gráfico já se encontra também o polinômio de 6º grau utilizado para a aproximação da

curva. Tal polinômio é:

T=−1,72⋅10−14
⋅̇

6
1,35⋅10−11

⋅̇
5
−3,83⋅10−9

⋅̇
4
3,94⋅10−7

⋅̇
3
2,47⋅10−5

⋅̇
2
−6,14⋅10−3

⋅̇1,50

3.8.  Sistema  8:  sistema  7  mais  atrito  viscoso  prove niente  dos  mancais

hidrodinâmicos

O sistema 8 é exatamente igual ao sistema 7, porém é adicionada a fórmula de atrito viscoso

para o mancal do sistema, assim como para as outras duas juntas, explicitada no capítulo Fehler:

Referenz nicht gefunden.
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Figura 18: Torque x Rotação do Steel Motor NEMA 56, 0,18kW



4. Simulações

Neste capítulo serão realizadas algumas simulações preliminares variando os parâmetros do

compressor  para  se  tomar  conhecimento  de  algumas  das  curvas  características  desses.  Os

parâmetros serão também variados para se observar a influência de cada um deles nas curvas.

4.1. Simulações do Sistema 1

Utilizando os parâmetros:

J v=0,005kg m2 ;T o=2N m ;=188,5rad / s; M p=1kg;e=0,025m;l=0,1m ,
obtiveram-se os seguintes gráficos:

Pelos gráficos, observa-se que que o volante acelera até chegar à velocidade de operação

após aproximadamente dois segundos. Era o esperado, pois a partir desse momento o torque do

motor fica na média igual a zero. Repare que̇ oscila ao redor da velocidade de operação. Isso

ocorre porque, como somente o pistão e o volante possuem massa, para o sistema manter a energia

cinética total constante (pois, como já dito, a partir desse instante o torque do motor é na média

igual  a  zero),  quando o  pistão  está  com velocidade mínima,  o  volante  estará  com velocidade

máxima, e vice versa.
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Figura 19: Simulação do Sistema 1



Já velocidade  de  oscilação  da  biela  e  do  pistão  devem ser  proporcionais  à  velocidade

rotacional do volante, portanto percebe-se que a oscilação de ̇ aumenta até chegar na operação.

Variando o momento de inércia do pistão, obtém-se:

Percebem-se duas influências do momento de inércia nas curvas. A primeira é o tempo para

o sistema atingir a velocidade de operação: quando se aumenta o momento de inércia do pistão,

aumenta-se também o período até se atingir a velocidade de operação e vice-versa. 

Já a segunda é com relação à oscilação de̇ ao redor de : quanto menor a massa,

maior, e vice-versa. Isso se dá justamente porque a velocidade de rotação do volante varia para

compensar a variação da energia cinética do pistão, assim, se o momento de inércia for maior, terá
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Figura 20: Sistema 1, com Jv = 0,01 kg m²

Figura 21: Sistema 1, com Jv = 0,001 Kg m²



que variar menos para compensar uma mesma quantidade de energia cinética, e vice versa.

Variando agora a massa do pistão, observa-se grandes semelhanças à variação do momento

de inércia do volante:

Percebe-se que quanto maior a massa do pistão maior a variação de̇ ao redor de .

Ou seja, quanto maior a massa do pistão, maior a energia a ser compensada pelo volante e maior a

oscilação da sua velocidade de rotação e vice versa.

Pelos  gráficos  não  fica  aparente,  mas  o  tempo  que  o sistema  demora  para  chegar  na

velocidade de operação é também dependente da massa do pistão. Isso pode ser claramente notado

pela equação diferencial do Sistema 1, onde a massa do pistão é encontrada no denominador.
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Figura 22: Sistema 1, com Mp = 5 kg

Figura 23: Sistema 1, com Mp = 0,1 kg



Dos gráficos fica evidente que a alteração de Mp tem maior influência na oscilação dė e

pouca  influência  sobre  a  aceleração  total  do  sistema,  enquanto  que  a  alteração  deJ v tem

influências mais equilibradas. Isso se dá porque o pistão a cada ciclo é acelerado e desacelerado de

zero até a velocidade máxima do ciclo, enquanto que o volante só acelera e desacelera o suficiente

para compensar a alteração de energia cinética do pistão, nunca chegando a zero (pois se em algum

momento o volante poussir velocidade de rotação igual a zero o sistema todo estará em repouso,

como pode ser observado nas equações deẋ e ̇ ). 

Como o volante possui uma menor variação percentual da velocidade de rotação e o pistão

uma variação percentual  da velocidade linear  maior, para ambos causarem o mesmo efeito  na

aceleração total do sistema o pistão deverá ter uma alteração na massa que cause uma alteração na

oscilação de̇ grande, enquanto que o volante deverá ter uma alteração no seu momento de

inércia  que  cause  alterações  na  oscilação  de̇ não  tão  grandes.  Efeitos  similares  serão

observados quando for adicionada a massa da biela, no Sistema 3. 

Variando agora o último parâmetro possível do sistema 1, que é a relação entrel e e ,

obtém-se:
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Figura 24: Sistema 1, com l = 0,15m; e e =0,02m



Percebe-se que a oscilação total de̇ e a oscilação de̇ em torno de assim como o

tempo de estabilização do sistema são afetados. Isso ocorre porque o caminho percorrido pelo

pistão varia (somente por causa dee ), portanto se esse for maior, a velocidade do pistão terá que

ser mais elevada para percorrer o mesmo caminho no mesmo tempo (aumentando a oscilação de

̇ ). 

Maior velocidade do pistão significa maior energia cinética média e assim uma quantidade

maior  de  energia  externa  (torque  do  motor)  a  ser  injetada,  e  portanto  um  tempo  maior  de

estabilização. Significa também maior variação de energia cinética do pistão a ser compensada, e,

portanto, uma maior variação de ̇ em torno de ,   O oposto se observa quando se diminui

e .

O  efeito  da  variação  del é  perceptível  somente  eṁ ,  pois  com  a  variação  do

comprimento  da  biela,  altera-se  também a  variação  total  de  (ou  seja,  se  a  biela  for  mais

comprima  variará menos em uma revolução do volante).

4.2. Simulações do Sistema 2

Com os parâmetros antes utilizados no sistema 1, mais:

D=0,004m ; Pmax=180000N /m2 ; Pmin=100000N /m2 ; Patm=10000N /m2 ;V morto=6,28⋅10−3m3

,
obtém-se:
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Figura 25: Sistema 1, com l = 0,075m; e e = 0,0275m



A princípio, a diferença que se pode observar entre no sistema 2 com relação ao sistema 1, é

que ̇ não estabiliza mais em volta de ,  e sim abaixo. Isso ocorre porque agora existem

forças resistivas ao movimento, e o sistema estabiliza quando a média dessas forças no tempo

compensar o torque médio no tempo.

Outro efeito importante é a dificuldade em que o sistema tem para completar o primeiro

ciclo. Isso acontece, porque logo no início o motor precisar fornecer a energia tanto para comprimir

o ar da câmara, quanto para acelerar os componentes do sistema. Tal efeito se ameniza a partir do

segundo ciclo,  justamente porque os componentes já  possuem então alguma velocidade.  Dessa

forma, no regime de operação o motor só precisa fornecer energia para comprimir o ar.

No gráfico da força do ar dá para reparar claramente os estágios de compressão, descarga,

expansão e sucção.

Podem-se observar mais claramente os efeitos da força de resistência do ar com os gráficos

das figuras 27 e 28:
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Figura 26: Simulação do Sistema 2



Percebe-se que quandoPmax foi  aumentada a velocidade de regime foi  diminuída e os

efeitos sobre o primeiro ciclo amplificados. Isso ocorre porque agora a câmara comprime o ar a

pressões mais altas e consequentemente maior a força resistente do ar. O oposto ocorre quando

Pmax é diminuída.
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Figura 27: Sistema 2, com Pmax = 240 000 N/m²

Figura 28: Sistema 2, com Pmax = 190 000 N/m²



Os efeitos da mudança do diâmetro do pistão são similares como pode ser observado nas

figuras  29 e  30. Isso se dá pois o pistão está diretamente relacionado com a quantidade de ar

comprimida, e consequentemente com a força resistiva do ar. 
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Figura 29: Sistema 2, com D = 0,045m

Figura 30: Sistema 2, com D = 0,02m



Há uma diferença,  porém:  quando se alteraPmax a pressão chegará a  valores de pico

diferentes e ficará portanto somente uma partes do ciclo a pressões diferentes, e consequentemente

forças do ar diferentes; já a alteração no diâmetro não altera a pressão, altera somente a área que tal

pressão atua, e consequentemente a força resistiva do ar, em todos os instantes.

4.3. Simulações do Sistema 3

No  sistema  3,  foram  utilizados  todos  os  parâmetros  do  sistema  2,  mais  os  seguintes
parâmetros:

M b=2 kg ; Jb=0,005kg m2 ; a=0,05m

Os gráficos obtidos são dados na figura 31:
 

Do gráfico fica claro que a oscilação da velocidade do volante aumentou. Os efeitos sobre a

oscilação  de̇ são  agora,  porém,  não  tão  claros.  Percebe-se  que  nos  instantes  em  que  as

velocidades de translação do pistão e da biela são elevadas, a velocidade de rotação da biela é

pequena e vice-versa. Dessa forma, a rotação da biela tende a compensar as oscilações de energia

cinética das velocidades translacionais da biela e do pistão.

Aumentando a massa da biela, como visto na figura  32, repare que a oscilação dė

aumenta, mas já aumentando o momento de inércia da biela, a oscilação de̇ cai, inicialmente

(figura 33). Com um  novo aumento do momento de inércia da biela, a oscilação dė volta a
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Figura 31: Simulação do Sistema 3



crescer (figura 34):

A razão  disso  é  simples:  inicialmente,  na  figura  31̇ ,  oscilava  para  compensar  as
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Figura 32: Sistema 3, com Mb = 10 kg

Figura 33: Sistema 3, com Jb = 0,03 kg m²

Figura 34: Sistema 3, com Jb = 0,1 kg m²



velocidades translacionais da biela e do pistão. Com o aumento da massa da biela, na figura 32, a

oscilação de̇ aumentaram para compensar o aumento de energia oscilante pela adição de massa

na biela. Já o primeiro aumento do momento de inércia da biela, na figura  33, ajuda o volante a

compensar as energias cinéticas das velocidades translacionais da biela e do pistão, e assim a

oscilação de̇ já não é tão grande. E por fim, na figura 34, o momento de inércia da biela já é tão

grande, que não só compensa sozinho as velocidades translacionais da biela e do pistão, como sobra

energia, que precisa agora ser compensada pelo volante.

Como já foi explicado na simulação do Sistem 1, o aumento do momento de inércia e massa

da biela causam também um retardamento na estabilização do sistema. Por motivos análogos a

influência de J b M b é menos forte sobre o tempo de estabilização do que sobre a oscilação de

̇ .

4.4. Simulações do Sistema 4

Para  a  simulação  do  sistema  4  foram  usados  os  mesmos  parâmetros  do  sistema  4  e

adicionalmente o parâmetrok=1,4 . Os gráficos resultantes são mostrados na figura 35:

A princípio talvez o leitor não consiga indentificar nenhuma variação para a simulação do

sistema 3, pelo fato de a força externa do ar ter se alterado apenas ligeiramente. Porém, as figuras
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Figura 35: Simulação do sistema 4 com k = 1,4



36 e 37, uma simulação do sistema 3 e do sistema 4 em um intervalo menor (apenas 1 segundo),

deixa mais claro as diferenças existentes.

Percebe-se das duas figuras que, no período de simulação, enquanto o sistema 3 percorreu
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Figura 36: Simulação de 1 segundo do sistema 3 (com os parâmetros antes fornecidos)

Figura 37: Simulação de 1 segundo do sistema 4 (com os parâmetros antes fornecidos)



11 ciclos completos e já começou o 12º ciclo, o sistema 4 está ainda no final do  11º ciclo. Isso é

evidente, posto que o trabalho necessário para realizar um ciclo do compressor isotérmico é menor

que o trabalho necessário para realizar um ciclo de um compressor adiabático.

4.5. Simulações do Sistema 5

A simulação inicial do sistema 5 foi feito com os seguintes parâmetros:

J v=0,0025kg m2 ;T o=2N m ;=188,5rad /s ; M p=1kg; e=0,025m ;l=0,1m ;a=0.05m;M b=1 kg;

Jb=0,005kg m2 ;M v=1 kg ;b=0,0125m;µ=001Pa⋅s ; R=0.0635m;L=0.0381m; c=0.00009m .  Os

resultados obtidos podem ser observados nas figuras 38, 39, 40 e 41.

Como era esperado, a curva do ângulo e da velocidade angular do volante do pistão reagiu

de maneira similar às simulações anteriores, pois a excentricidade do centro de rotação do volante

pouco efeito produz sobre a energia do resto do sistema (pistão, biela e volante ou manivel). Porém,

agora podem ser observados pelas figuras  40 e  41 a excentricidade e a órbita apresentada pelo

centro de rotação do volante.
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Figura 38: Ângulo do volante com relação ao tempo



A excentricidade pela qual o volante passa começa em 0, pois inicialmente ele se encontra
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Figura 39: Velocidade angular do volante com relação ao tempo

Figura 40: Excentricidade do centro de rotação volante



na  origem.  Com o  decorrer  da  simulação,  ele  começa  a  ser  empurrado  para  fora,  tanto  pelo

desbalanceamento da manivela (por não possuir o centro de massa no centro de rotação), como pela

força que deve aplicar para a biela e o pistão exercerem seus movimentos. As forças do mancal

agem então no volante de modo a reposicionar o centro de rotação do volante à origem. Depois de

algum  tempo  as  forças  do  mancal  e  as  forças  de  desbalanceamento  do  volante  levam  a

excentricidade a um valor praticamente estável, com pequenas oscilações. Nesse ponto, a órbita do

centro de rotação do volante fica próxima a uma circunferência, que pode ser observada na figura

41 (onde a linha da órbita fica mais escura).

4.6. Simulações do Sistema 6

Para a simulação do sistema 6 foram utilizados os seguintes parâmetros:

J v=0,0025kg m2; J b=0,005kg m2 ; M p=1kg; M b=1 kg ; M v=1 kg ;e=0,025m ;l=0,1m ; a=0,05m;

b=0,0125m ;To=2N m ;=188,5rad /s ;µ=001Pa⋅s ; R1=R2=R3=0.0635m; L1=L2=L3=0.0381m;

c1=c2=c3=0.00009m; PMAX=180.000Pa .

Esses parâmetros são os mesmos do sistema 5, com a adição de parâmetros dos mancais

hidrodinâicos 2 e 3, para direta comparação com tal sistema. As figuras 42, 43, 44, 45, 46, 47 e 48
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Figura 41: Órbita da posição do centro de rotação do volante



mostram o resultado da simulação do sistema 6.

Percebe-se que o volante comporta-se exatamente igual para o sistema 5 e para o sistema 6.

A excentricidade do contato mancal/volante se comporta ligeiramente diferente no início da

simulação, convergindo para os mesmos valores no regime permanente. Tais diferenças se devem

aos métodos numéricos usados por cada software.
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Figura 42: Velocidade Angular do volante em relação ao tempo

Figura 43: Excentricidade do Contato Mancal/Volante



A excentricidade  do  contato  volante/biela  é  muito  similar  à  excentricidade  do  contato
mancal/volante. Isso pode ser explicado, porque a rotação em ambos é muito parecida, e perto de
̇ .

Já  a  excentricidade  do  contato  biela/pistão  mostra  uma  grande  amplitude  inclusive  no
regime permanente. No gráfico de órbita dá para se enxergar melhor os efeitos aí presentes.
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Figura 44: Excentricidade do Contato Volante/Biela

Figura 45: Excentricidade do Contato Biela/Pistão



Novamente percebe-se os efeitos similares no regime permanente, e as pequenas diferenças
no início da operação.

A órbita da excentricidade do contato volante/biela é também muito parecida com a órbita
do da excentricidade do contato mancal/volante.
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Figura 46: Órbita da Excentricidade do Contato Mancal/Volante

Figura 47: Órbita da Excentricidade do Contato Volante/Biela



Na Figura 48 dá para se perceber melhor o que ocorre no mancal hidrodinâmico 3. Existe

uma grande amplitude em x, justamente pelo fato do pistão estar fixado na direção y,  e o seu

deslocamento ser totalmente em x. A pequena oscilação em y se deve ao ângulo em que a biela está

empurrando o pistão, que será quase o tempo todo não paralelo ao eixo x.

4.7. Simulações do Sistema 7

Para a simulação do sistema 7 foram utilizados os seguintes parâmetros:

J v=0,0025kg m2 ; J b=0,005kg m2;M p=1kg;M b=1 kg ;M v=1 kg ;e=0,025m ; l=0,1m ;a=0,05m;

b=0,0125m ;=188,5rad/ s ;µ=001Pa⋅s ; R1=R2=R3=0.0635m; L1=L2=L3=0.0381m;

PMAX=180.000Pa ; c1=c2=c3=0.00009m ,

e torque:

T=−1,72⋅10−14
⋅̇

6
1,35⋅10−11

⋅̇
5
−3,83⋅10−9

⋅̇
4
3,94⋅10−7

⋅̇
3
2,47⋅10−5

⋅̇
2
−6,14⋅10−3

⋅̇1,50 .

O resultado da substituição de um motor teórico por um real só tem efeitos relevantes no

início da operação, porque perto do ponto de operação, a curva do motor se parece com uma reta

(ou seja, com o motor que estava sendo usado anteriormente). O efeito em̇ pode ser observado

na  Figura 49. Repare que no regime permanente o comportamento do volante é muito similar,

porém a curva apresentada até chegar no regime permanente é bastante diferente:
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Figura 48: Órbita da Excentricidade do Contato Biela/Pistão



As excentricidades e órbitas dos mancais 1 e 2 são também bastante parecidas no regime

permanente, com algumas diferenças no início da operação, observadas nas figuras 50, 51, 53 e 52:

                                    

75

Figura 49: Velocidade angular do volante em relação ao tempo

Figura 50: Excentricidade do Contato Mancal/Volante
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Figura 51: Excentricidade do Contato Volante/Biela

Figura 52: Órbita da Excentricidade do Contato Mancal/Manivela



                                   

Já o mancal 3 apresenta maiores diferenças, relativas à força de compressão do ar, que volta

a estar presente no sistema, podendo ser observadas nas figuras :
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Figura 54: Excentricidade do Contato Biela/Pistão

Figura 53: Órbita da Excentricidade do Contato Manivela/Biela



 

                          

4.8. Simulações do Sistema 8

Para a simulação do sistema 8 foram utilizados os seguintes parâmetros:

J v=0,008kg m2; J b=0,0005kg m2;M p=0,1kg ; M b=0,1kg ;M v=0,7 kg ;e=0,025m ; l=0,1m ;

a=0,05m ;b=0,0125m ;µ=0,1Pa⋅s ; R1=R2=R3=0.005m; L1=L2=L3=0.01m;

PMAX=300.000Pa ;c1=c2=c3=0.000045m ,

e torque:

T=5⋅−1,72⋅10−14⋅̇61,35⋅10−11⋅̇5−3,83⋅10−9⋅̇43,94⋅10−7⋅̇32,47⋅10−5⋅̇2−6,14⋅10−3⋅̇1,50 .

O resultado observado foi:
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Figura 55: Órbita da Excentricidade do Contato Biela/Pistão

Figura 56: Velocidade angular do volante
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Figura 58: Excentricidade do contato Mancal/Volante

Figura 57: Ângulo de rotação do volante
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Figura 59: Excentricidade do contato Volante/Biela

Figura 60: Excentricidade do contato Biela/Pistão
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Figura 61: Torque viscoso do contato Mancal/Volante

Figura 62: Torque Viscoso do contato Volante/Biela
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Figura 63: Torque viscoso do contato Biela/Pistão

Figura 64: Torque Fornecido pelo Motor Elétrico



  

                            

 

                   

Os gráficos mostram que a estabilização do atrito viscoso em cada contato é altamente

dependente da estabilização da excentricidade do contato. Além disso, para tal sistema, de atrito

viscoso predominantemente baixo, a velocidade angular do volante não se alterou drasticamente

(apresentando uma ligeira queda após o momento que parecia ter se estabilizado).

Quando simulou-se exatamente o mesmo sistema, comR1=R2=R3=0.05m , o resultado

obtido foi:
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Figura 66: Energia Fornecida pelo Motor Elétrico

Figura 65: Potência Fornecida pelo Motor Elétrico
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Figura 67: Velocidade Angular do Volante

Figura 68: Ângulo de rotação do volante
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Figura 69: Ecentricidade do contato Mancal/Volante

Figura 70: Excentricidade do contato Volante/Biela
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Figura 71: Excentricidade do contato Biela/Pistão

Figura 72: Atrito viscoso do contato Mancal/Volante
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Figura 73: Atrito viscoso do contato Volante/Biela

Figura 74: Atrito viscoso do contato Biela/Pistão



                                       

                                   

88

Figura 76: Potência Fornecida pelo Motor Elétrico

Figura 75: Torque Fornecido pelo Motor Elétrico



                                       

Essa simulação, em oposição à anterior, mostrou que as excentricidades se estabilizaram

mais rapidamente, apresentando valores mais reduzidos. O torque viscoso, em compensação, devido

ao maior raio do mancal e juntas hidrodinâmicas, foi muito maior, o que ocasionou um sistema

lento, com torque mais alto fonecido pelo motor elétrico (que não conseguiu chegar e passar do

ponto de torque máximo).
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Figura 77: Energia Fornecida pelo Motor Elétrico



5. Resultados

Para o sistema com parâmetros 

J v=0,008kg m2 ; J b=0,0005kg m2 ;M p=0,1kg ; M b=0,1kg ;M v=0,7 kg ;e=0,025m ;

l=0,1 m; a=0,05m; b=0,0125m; PMAX=300.000Pa ,

e torque:

T=5⋅−1,72⋅10−14⋅̇61,35⋅10−11⋅̇5−3,83⋅10−9⋅̇43,94⋅10−7⋅̇32,47⋅10−5⋅̇2−6,14⋅10−3⋅̇1,50 ,
o resultado foi (sem mancal e juntas hidrodinâmicas):
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Figura 78: Velocidade Angular do volante

Figura 79: Ângulo de Rotação do Volante
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Figura 80: Torque Fornecido pelo Motor Elétrico

Figura 81: Potência Fornecida pelo Motor Elétrico

Figura 82: Energia Fornecida pelo Motor Elétrico



 Portanto, o volume de ar comprimido  e energia gasta foi respectivamente2,56⋅10−3 m³ e

1490 J.

Quando se adicionaram o mancal e juntas hidrodinâmicos, com raios iguais a 0,005 m, com

gráficos já apresentados em 4.8. Simulações do Sistema 8, os valores foram para2,56⋅10−3 m³ e

1964 J . Isto mostra, como esperado, que quando o atrito viscoso não é significativamente alto, o

motor fornece mais torque, fazendo com que o volume de ar comprimido praticamente não se altere

e a potência aumente. 

Já para o sistema com mancais e juntas hidrodinâmicas, com raios igual a 0,05 m, e gráficos

também já  apresentados  em  4.8.  Simulações  do  Sistema 8,  os  valores  apresentados  foram de

0,527⋅10−3 m³ e 1048 J, mostrando que quando o atrito viscoso é maior, o motor fornece maior

torque,  a  velocidades  muito  mais  baixas,  ocasionando  potências  menores,  e  volume  de  ar

comprimido muito menor.

Com relação aos esforços nos mancais, pode se observar que o modelo criado com mancais

hidrodinâmicos  curtos  pouco  difere  dos  esforços  de  mancais  ideais  (se  apresentam abaixo  os

esforços somente do intervalo de 1,9s até 2,5s que já está mais próximo da estabilização):
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Figura 83: Esforços na direção X no contato Mancal/Manivela para o modelo com mancais
hidrodinâmicos curtos



    

   

     

93

Figura 84: Esforços na direção X no contato Mancal/Manivela para o modelo com mancais ideais

Figura 85: Esforços na direção Y no contato Mancal/Manivela para o modelo com mancais
hidrodinâmicos curtos

Figura 86: Esforços na direção Y no contato Mancal/Manivela para o modelo com mancais ideais
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Figura 87: Esforços na direção X no contato Manivela/Biela para o modelo com mancais
hidrodinâmicos curtos

Figura 88: Esforços na direção X no contato Manivela/Biela para o modelo com mancais ideais

Figura 89: Esforços na direção Y no contato Manivela/Biela para o modelo com mancais
hidrodinâmicos curtos
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Figura 90: Esforços na direção Y no contato Manivela/Biela para o modelo com mancais ideais

Figura 91: Esforços na direção X no contato Biela/Pistão para o modelo com mancais
hidrodinâmicos curtos

Figura 92: Esforços na direção X no contato Biela/Pistão para o modelo com mancais ideais
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Figura 93: Esforços na direção Y no contato Biela/Pistão para o modelo com mancais
hidrodinâmicos curtos

Figura 94: Esforços na direção Y no contato Biela/Pistão para o modelo com mancais ideais



6. Conclusões

O modelo criado permitiu a avaliação dos diversos parâmetros de um compressor alternativo

comum, como já muito explorados na literatura, assim como a avaliação do seu mancal e juntas

hidrodinâmicas, tanto na excentricidade e órbita dessas, assim como o atrito viscoso presente nelas.

Primeiramente, o modelo mostrou que existe uma pequena diferença de simulação entre o

software ADAMS e matlab,  proveniente do método de integração usado de cada um, que fica

desprezível ao se atingir o regime permanente (da comparação dos sistemas 5 e 6).

Além disso, o modelo mostrou a faixa de grandeza do atrito viscoso para os casos estudados,

assim como a sua curva característica, que é altamente dependente da excentricidade e velocidade

relativa entre as partes, assim como dos elementos construtivos tais como comprimento, folga radial

e principalmente raio, nos casos de mancais curtos. 

Ele mostrou ainda, que, em um dos casos, não houve grande variação das velocidades dos

elementos envolvidos (biela, manivela e pistão), mas sim da potência, pois como o atrito  viscoso

tende a desacelerar tais elementos, o torque fornecido pelo motor aumenta a ponto de reestabilizar

as velocidades, e consequentemente aumentando a potência necessária.

Já no outro caso, onde o atrito observado foi muito maior (devido ao maior raio do sistema),

pode-se observar que o sistema estabilizou mais rapidamente (ver seção 4.8. Simulações do Sistema

8)  com  significativas  alterações  nas  velocidades  dos  componentes  envolvidos,  da  potência

desprendida pelo motor e do volume de ar comprimido pelo compressor.

Ele  mostrou  também  que  a  estabilização  da  excentricidade  das  juntas  e  mancal

hidrodiâmicos assim como do atrito viscoso é diferente que a estabilização da velocidade de biela,

manivela e pistão (no caso mostrado, maior) quando considerados sem atrito. 

O modelo  construído  não se restringe a pequenos  compressores,  como o caso estudao,

podendo-se variar os parâmetros desse para se estudar compressores alternativos de grande escala

também (ler o manual em anexo).

O  modelo,  porém,  possui  a  restrição  de  mancais  hidrodinâmicos  curtos,  apresentando

resultados  distoantes  da  realidade  quando  o  raio  do mancal  for  menor  que duas  vezes  o  seu

comprimento, e assim só poderá servir como base de comparação para um modelo mais complexo

de mancais hidrodinâmicos quando tais valores forem respeitados.
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Anexos

Manual de utilização do ADAMS:

Nesse manual estão indicados os passos básicos para que o leitor saiba como lidar

com o modelo em ADAMS criado para o sistema pistão-biela-manivela com mancal e

juntas hidrodinâmicos de um compressor. Não é intuito deste familiarizar o leitor com o

ADAMS  inteiros,  somente  com  as  partes  relacionadas  ao  modelo,  para  seu  uso.  O

ADAMS possui algumas plataformas diferentes de trabalho, como a Car, a View, a Solver,

entre outras. Para a utilização do modelo só se faz necessário o entendimento do ADAMS

View.

Primeiramente o leitor deve abrir o modelo criado em ADAMS, a partir do ADAMS

View, e para isso ao abrir o ADAMS View deve escolher a opção Import a File e apontar

no campo ao lado de “Start in” para a pasta onde o modelo está salvo e clicar em “Ok”.

Após isso, deve dar um duplo clique (ou clique com o botão direito do mouse, seguido da

opção “Browse”) no campo ao lado de “File to read” e selecionar o arquivo onde está o

modelo.

O modelo aberto já está funcionando, necessitando somente dos dados de entrada

do sistema. Porém, para a familiarização do leitor, será mostrado o passo a passo na

construção do sistema, desde o início, para o caso da necessidade de alguma alteração

no futuro.

O primeiro passo a se realizar é inserir variáveis construtivas do sistema. Essas

variáveis  podem ser  alteradas  entre  simulações,  porém durante  uma  simulação  elas

possuem valor fixo, diferenciando-se assim das variáveis de estado do sistema, que serão

explicadas posteriormente.  Para se inserir  uma nova variavel  construtiva,  tem que  se

apontar no menu superior para “Build”, em seguida para “Design Variable e finalmente

para “New”. No campo ao lado de “Name” deve-se inserir .”nome do sistema”.”nome da

variavel”.
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As variáveis construtivas do sistema são:

– A: (área transversal do cilindro da câmara de compressão, sendo igual a

⋅D2

4
);

– clreance1;  clearence2  e  clearence3  (folga  radial  dos  diversos  mancais

hidrodinâmicos com índices já explicados na seção de modelagem do sistema);

– cm_biela (distância do ponto de contato entre biela e pistão para o centro de

massa da biela);

– cm_manivela (distância entre o ponto de contato entre manivela e mancal

para o centro de massa da manivela);

– comprimento1;  comprimento2 e comprimento3 (comprimento dos diversos

mancais hidrodinâmicos com índices já explicados na seção de modelagem do sistema);

– comprimento_pistão (comprimento do pistão, e não possui influência sobre a

simulação do sistema, sendo somente visual);
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Figura 95: Variáveis Construtivas



– D (diâmetro do pistão sendo igual a 2⋅raio_pistao  );

– e (comprimento do ponto de contato entre manivela e mancal até o ponto de

contato entre manivela e biela);

– grossura (espessura de biela e manivela, e não  possui influência sobre a

simulação do sistema, sendo somente visual);

– Jb e  Jv;  (momento de inércia  da biela e manivela  respectivamente,  com

relação ao ponto de contato entre biela e pistão e manivela e mancal, respectivamente).

Este parâmetro requer atenção para que não se gere biela e manievela com ponto algum

com momento de inércia menor que zero (lembrar do teorema dos eixos paralelos);

– k (constante politrópica);

– l (comprimento da biela, desde o ponto de contato com a manivela, até o

ponto de contato com o pistão);

– Mb; Mp e Mv (massas da biela, pistão e manivela, respectivamente);

– mi (viscosidade do óleo utilizado para lubrificação);

– PATM (pressão atmosférica);

– PMAX (pressão de descarga do compressor);

– PMIN (pressão de sucção do compressor);

– raio1; raio2 e raio3 (raio dos diversos mancais hidrodinâmicos com índices já

explicados na seção de modelagem do sistema);

– raio_pistao (raio do pistão);

– To (torque inicial, quando o motor considerado for linear);

– VM (volume morto da câmara de compressão);

– VMAX  (volume  máximo  da  câmara  de  compressão  desconsiderando  o

volume morto, sendo igual a 2⋅e⋅A ), e;

– w (velocidade de torque nulo para motor linear).

Feito  isso,  o  sistema  em  si  terá  de  ser  construído.  Para  isso  se  utilizará  a

ferramenta (clicando com o botão da direita) no botão da segunda coluna da primeira

linha do menu “Main Tool”.  Primeiramente se criará a manivela clicando em na opção

“Link”, deixando ativada a opção “New Part”. No campo abaixo de “Length” se colocará a

variável  e, nos campos abaixo de Width e Depth se colocará a variável  grossura  (sem

esquecer de ativar as caixas relacionadas às dimensões), e em seguida se clicará com o

botão da direita em qualquer lugar e na caixa que aparecer se colocarão os dados “0, 0,
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0” e “related to origin” (ou pode-se clicar diretamente no ponto 0, 0, 0 no desenho) e

depois se clicará novamente com o botão da direita em qualquer lugar e na caixa que

aparecer se colocarão os dados “(-e), 0, 0” (ou pode-se clicar em qualquer ponto negativo

do eixo x).

Similarmente se criará a biela, só que com “Length” com variável  l, com o ponto

inicial sendo “(-e), 0, 0”, e ponto final como “(-e+l), 0, 0”. Já o pistão será criado com a

ferramenta  “Cylinder”  no  mesmo  menu  de  “Rigid  Body”,  e  “Length”  com  variável

comprimento_pistao e “Radius” com variável raio_pistao, ponto inicial “(-e+l), 0, 0) e ponto

final “(-e+l+comprimento pistao), 0, 0”.

Além dessas partes, devem ser construídas também duas partes adicionais que

serão  os  apoios  do  sistema.  A primeira  será  o  mancal  de  apoio  da  manivela,  por

simplicidade uma esfera, no centro de referência, e portanto clica-se em “Sphere” em

“Rigid Body”, deixando a opção “On Ground” ativa. Pode-se colocar qualquer valor de raio

para a esfera, contanto que sua posição fique no centro de referência. A segunda será o
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cilindro da câmara de combustão, portanto a ferramenta “Cylinder” de “Rigid Tool”, com a

opção “On Ground” ativa, podendo se colocar o mesmo valor de raio do pistão, e qualquer

comprimento, desde que fique orientado no mesmo sentido que o pistão.

Em sequência,  deveriam ser  criados os vínculos do sistema.  Porém não serão

utilizados os vínculos fornecidos pelo ADAMS para o contato entre manivela com mancal,

entre biela e manivela, e pistão com biela, pois serão justamente os vínculos a serem

simulados  e  estudados (que  seriam a  opção  “Revolute”  dentro  do  botão  da segunda

coluna da segunda linha do menu “Main Tool”). Cria-se portanto somente o vínculo entre

pistão e cilindro, que será a opção “Cylindrical” dentro do botão da segunda coluna da

segunda linha  do  menu  “Main  Tool”,  escolhendo-se  as  opções  “2  Bod-  1  Loc”,  “Pick

Feature”, “Pick Body” e “Pick Body” e posteriormente escolhendo-se o pistão e o cilindro

(dica:se estiver difícil escolher o corpo, por estarem ocupando o mesmo espaço, clique

com  o  botão  da  direita  sobre  eles  para  abrir  um  menu  com  as  opções),  sendo  a

localização do vínculo no centro do pistão e vetor de orientação na direção do eixo de

ambos. Após isso, por comodidade deixa-se o cilindro invisível, clicando com o botão da

direita sobre ele e em seguida “Appearence”, selecionando transparência para 100%.

O próximo passo é criar as medições que o ADAMS realiza ao longo da simulação

e que podem ser depois apresentadas em gráficos. Para isso deverá se acessar o menu

“Build”,  “Measure",  “Point-to-Point”  e  “New”.  A nomenclatura  é  similar  à  das  variáveis

construtivas, mas agora deve-se escolher, conforme a variável a ser medida, se é uma

distância, uma velocidade, uma aceleração, uma velocidade angular ou uma aceleração

angular. Será mostrado o exemplo para uma variável medida e em seguida e depois se

explicarão cada uma das outras variáveis.

Portanto, para medir, por exemplo, a variável  X2p que é a velocidade relativa, em

x, do ponto da biela do contato entre biela e manivela e ponto da biela do contato entre

biela e manivela (lembre-se que não é zero, pois existe a excentricidade proveniente da

teoria de mancal hidrodinâmico), utiliza-se a opção “Characteristic: Translational Velocity”,

“Component: X”. Para se definir os pontos “To Point” e “From Point” clica-se com o botão

da direita em tais campos “Marker” e “Pick”, e clica-se nos pontos desejados. O ADAMS

cria uma séria de marcadores para cada parte que é criada, para facilitar na hora de criar

tais  medidas,  e  quando se  clicar  com o botão  da direita  em cima de uma peça,  no

momento da escolha dos pontos, serão mostrados os marcadores naquele ponto, para

ficar mais fácil a escolha. Se se souberem os marcadores, pode-se usar também a opção

“Marker” e “Browse”.
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As medidas do sistema são:

– OMEGA2, OMEGA3 (velocidade angular relativa entre biela e manivela e

velocidade angular relativa entre biela e pistão, repectivamente);

– PHIp (velocidade angular da manivela);

– X1,  X2  e  X3  (excentricidade  em  x  para  os  diversos  componentes  dos

mancais hidrodinâmicos com índices já explicados na seção de modelagem do sistema);

– X1p, X2p, X3p (derivadas temporais de X1, X2 e X3);

– Y1,  Y2  e  Y3  (excentricidade  em  x  para  os  diversos  componentes  dos

mancais hidrodinâmicos com índices já explicados na seção de modelagem do sistema);

– Y1p, Y2p, Y3p (derivadas temporais de Y1, Y2 e Y3), e;

– XP e Xpp (distância entre o centro de referência e o ponto de contato da

biela com o pistão e sua derivada temporal).

Após a criação das medidas do sistema, é necessário criar as forças que agem no

mancal  e  nas juntas  do sistema.  Mas para isso,  serão criadas algumas variáveis  de

estado que diminuem o tamanho da função a ser inserida. As variáveis de estado, como já

dito,  são aquelas que possuem valor  variável  ao longo da simulação.  Para criar  uma

variável  de estado  deve se  recorrer  novamente  ao  menu “Build”,  “System Elements”,
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“State Variable” e “New”. Para se alterar a fórmula da variável, basta clicar nos 3 pontos

ao lado direito do campo “F(time, ...)”, e para alterar a condição inicial, basta alterar ao

lado do campo “Guess for F(t=0) =”. Quando uma variável de estado, ou qualquer outra

função do ADAMS se referir a uma outra variável de estado, é necessário que ela utilize o

comando “varval(“variável referida”)”.

As variáveis de estado do sistema são:

– t (torque de entrada do sistema);

– Ei ( X i
2Yi

20,5 , i =1, 2 ou 3);

– EPSi ( varvalEi 

clearencei

, i = 1, 2 ou 3);

– EPSip (, i = 1, 2 ou 3);

– GAMMAip ( −Yi⋅X i p−X i⋅Yi p

varvalEi 
2

, i = 1, 2 ou 3);

– Aepsi( 1−varvalEPSi 
20,5 , i = 1, 2 ou 3), e;

– Bepsi ( 12⋅varvalEPSi 
2 , i = 1, 2 ou 3);
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– TorqueViscosoi (
Li⋅µ⋅Ri

2

Ci

⋅
2⋅

1−i
20,5⋅i , i = 1, 2 ou 3);

– Potência (que é a multiplicação do torque fornecido por PHIp).

Também  é  criada  uma  equação  diferencial  somente  para  se  medir  a  energia

fornecida  pelo  motor,  similarmente  ao  que foi  feito  nas  variáveis  de  estado.  Como a

energia  é  a  integração  da  potência  no  tempo,  basta  que  sua  fórmula  seja:

varval(potencia).

Em seguida serão criadas as forças dos vínculos no sistema,  com o botão da

segunda coluna da quarta linha do menu “Main Tool”, “Force (Single Component)”.  Se

escolhe a opção “Space Fixed” e “Pick Feature”. Em seguida se colocam as forças, com

valor constante qualquer (que depois será alterado) em cada mancal e junta, que são dez

no total: em x e y para a conexão da manivela com mancal; x e y para a conexão da

manivela  com a biela,  tanto para a manivela como para a  biela,  e;  em x e y para a

conexão da biela com o pistão, tanto para a biela, quanto para o pistão. Tais forças terão

tamanho reduzido com a ajuda da função “varval” e com as variáveis de estado reduzido,

e para a sua alteração (de constante para a fórmula dada pela teoria de mancal curto

hidrodinâmico) é necessário clicar na força com o botão direito do mouse e em seguida

modify.
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Por fim, serão criados os esforços externos do sistema, que são o torque fornecido

pelo  motor  à  manivela,  a  força de resistência  do ar  na câmara de compressão e  os

torques viscosos no mancal e juntas. Tais esforços são similares à criação dos esforços

nos vínculos, sendo a posição do torque do motor no centro de referência, o sentido de

cada  torque  viscoso  contrário  ao  do  movimento  imposto  pelo  motor,  e  a  força  de

resistência  do  ar  no  centro  do  pistão,  com sentido  negativo  em x  e  fórmula  (que  já

considera todos as quatro partes do ciclo termodinâmico na câmara).

“IF(XPp: IF(((PMAX*VM**k)/((.sistema.e+l-.sistema.XP)*.sistema.A+VM)**k)-PMIN: PMIN,

PMIN,((PMAX*VM**k)/((.sistema.e+l-.sistema.XP)*.sistema.A+VM)**k)),  IF(.sistema.XP-l:

PMIN,  0,  PMAX),  IF(((PMIN*(VMAX+VM)**k)/
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Figura 99: Forças Externas



((.sistema.e+l-.sistema.XP)*.sistema.A+VM)**k)-PMAX  :  (PMIN*(VMAX+VM)**k)/

((.sistema.e+l-.sistema.XP)*.sistema.A+VM)**k,  PMAX,  PMAX))*.sistema.A-

PATM*.sistema.A”

Para simular o sistema, basta se utilizar a função “Simulate” do menu superior e

escolher “Interactive Controls”. Dentro do menu que se abrir, para que a simulação seja

veloz  deve-se  retirar  a  opção  “Update  graphics  display”.  Para  os  gráficos  ficarem

adequados  deve-se  aumentar  o  número  de  passos  em  “Steps”  e  o  tempo  final  de

integração é dado ao lado de “End Time”.  Além disso,  para se melhorar a simulação,

deve-se  utilizar  a  opção  “Dynamic”  em  “Sim.  Type”,  e  depois  clicar  em  “Simulation

Settings...”  e  alterar  o  “Error”  e  “Hmax”  (sugestão:  máximo  de  1e-8  e  1e-6,

respectivamente, e se não funcionar, diminuir ainda mais).

Após a simulação, deve-se utilizar o “Post Processor” para se avaliar os resultados,

na terceira coluna da quarta linha do menu “Main Tool”. Pode-se então criar diferentes

páginas com diferentes gráficos. Para se adicionar um gráfico, basta selecionar a medida

e  “add curve”  e  para  trocar  de  curva  basta  utilizar  “surf”  e  em seguida  selecionar  a

medida. Se for necessário se plotar uma curva não em função do tempo, mas em função
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Figura 100: Controle de Simulação



de outra medida, como por exemplo para a órbita da excentricidade de uma junta, pode-

se utilizar o botão “Data” em baixo de “Independent Axis”.
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Figura 101: Post Processor


