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RESUMO

No trabalho realiza-se a simulacao de um sistema
pistdo-biela-manivela, com mancal e juntas hidr@diicos curtos, a
fim de se investigar o0 atrito viscoso nestes piteseninicialmente
realiza-se uma modelagem de um sistema simplificadonulado em
scilab para se entender o comportamento dos comfgmprincipais do sistema, e
comparar com a modelagem completa, simulado no wandt
ADAMS da MSC. O trabalho mostra que a excentriockdad o0 atrito
viscoso presente no mancal e nas juntas € altamedefgendente dos
fatores construtivos dos mesmos, como O seu corapton raio e folga
radial, assim como da viscosidade do 6leo utiliz&ldrabalho mostra também as
diferencas de simulacdo entre os dois softwardizadds, porém a modelagem
utilizada se restringe para mancais hidrodinamicotos.



ABSTRACT

In this report a simulation of the piston, conegtiod and camshaft system is done
with the short bearing model, to investigate treeous friction among them. Initially
the modeling of a simplified system is done, anmduated in scilab, to understand
the response of the main components of the systathalso to compare to the full
modeling, simulated with the software ADAMS from RISThe work shows that the
excentricity and friction of the bearing and joints highly dependent on the
constructive factors of such componentes, suckeragth, radius, radial clearence,
and oil viscosity used. The work also shows théetbhces on the simulation of both
softwares used, however the modeling is restritdeshort bearings.
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1. Introducao

1.1. Contexto

Como diversos autores citam, as técnicas de compresséao de ar, ja estdo presentes
h& milhares de anos antes de Cristo. Clumsky (1965) cita algumas aplicacdes antigas da
utilizacdo de ar comprimido, como instrumentos musicais de sopro, ar comprimido para
pessoas submersas na agua (por uma mangueira de couro), instrumento de sopro para

aumentar a brasa em fogueiras e até os primeiros modelos de 6rgdos musicais.

Os primeiros compressores alternativos acionados a vapor apareceram na segunda
metade do século 18, e ficaram muito mais populares com a invac¢do das furadeiras
movidas a ar comprimido. Alguns dos motivos pela clara preferéncia por ar comprimido
para o acionamento de furadeiras eram o aumento da eficiéncia (pode se armazenar ar
comprimido a temperaturas baixas, sem perde de energia, a0 passo que 0O vapor possui
complicacbes pela alta temperatura), e a seguranca quando comparada ao vapor
(também advindo das baixas temperaturas do ar comprimido). Com o aumento das
aplicacdes do ar comprimido na industria, surgiram, no inicio do século 20, os primeiros

turbocom pressores.

Os compressores dinamicos possibilitaram uma maior aplicacao industrial onde sé&o
necessarias altas vazfes. Quando se fala de taxas de compressdo muito altas, ou
aplicacbes em baixas capacidades, os compressores alternativos até hoje ainda sao
dominantes. Para refrigeracdo de geladeiras, por exemplo, ainda sdo amplamente

utilizados pelo seu baixo custo e alta eficiéncia.

Dessa forma, muitos estudos ainda sao realizados no &mbito de se entender as
vibracbes e ruido produzidos em tais compressores, assim como para aumentar sua
eficiéncia energética e vida util, e em outros aspectos, como por exemplo relacionados a

manutencgao e confiabilidade desses compressores.

1.2. Compressores

Silva (1977) define compressores como maquinas com a finalidade de comprimir
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gases para diversas aplicagbes, como: pintura, ferramentas pneumadticas, limpeza de
pecas, compressao de gas de cozinha, entre outros. No trabalho, ele cita que a diferenca
basica entre os compressores e 0s ventiladores se da pela elevacdo de presséo
geralmente maior e vazado geralmente menor de compressores. Em casos limitrofes, é

deficil se determinar se uma méaquina é um compressor ou um ventilador.

Chlumsky (1965) caracteriza um compressor de maneira similar, como sendo uma
maquina para compressao repetida de gases, ressaltando também que ventiladores séo
maguinas que elevam a pressao do gas somente a ponto de ultrapassar a resisténcia que

surge no fluxo do gas.

Os dois tipos de compressores que existem sdo: compressores dinamicos e de
deslocamento positivo. Os compressores dinamicos sao aqueles que transmitem energia
cinética ao fluido convertendo-a futuramento em presséao por meio de um difusor, podendo
ser axiais, onde o fluxo é perpendicular ao movimento das pas do compressor (no eixo de
rotacdo); radiais ou centrifugos, onde o fluxo € na direcédo radial. Existem também os
compressores dinamicos mistos, também chamados de diagonais, que estdo entre o0s

compressores radiais e axiais.

Ja os compressores de deslocamento positivo ou estaticos, sdo aqueles que
comprimem o gas pela reducédo do seu volume. Estes podem ser rotativos, como os de
parafuso, de lobulos, de cilinbro conchoidal, de engrenagens, entre outros e alternativos

gue serado estudados mais amplamente neste trabalho.

O funcionamento de um compressor alternativo se d& pela diminuicdo do volume
em uma camara de compressao por um pistdo, que é acionado por uma biela, conectada
em uma manivela. O gas € comprimido pelo pistdo até atingir a pressao de descarga,
determinada pela valvula de escape. Desse ponto em diante a valvula de escape se abre
e 0 gas de dentro da camara é expelido para um reservatério de alta pressdo, onde é
armazenado para uso posterior. Quando o pistdo atinge o fim de curso e comeca o
movimento de retrocesso, a pressdao do gas remanescente na camara de compressao
diminui, até alcancar a pressao de succ¢do, determinada pela valvula de admissédo. A
valvula de admissao se abre, e 0 gas € admitido para dentro da camara de compresséao. A

Figura 1 mostra os diversos elementos de um compressor alternativo.
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valvula de descarga

sucGao descarga

vélvula de sucgio
s +=— pistao
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\
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Figura 1: Diagrama dos principais
componentes de um compressor alternativo

Fonte:http://blogdoprofessorcarlao.blogsp
ot.com/2009/05/funcionamento-do-

compressor-alternativo_10.html

Feller (1944) classifica os diversos tipos de compressores alternarivosde acordo
com o acionamento e da conexdo com a unidade motora. Alguns desses tipos de
compressoes sdao: de acordo com 0 acionamento: compressor acionado por motor
elétrico, por vapor ou por motor de combustao interna, e; de acordo com a conexao com a
unidade motor: diretamente conectado, diretamente conectado com acoplamento flexivel,

por par redutor de engrenagens, por correia, e en bloc.

Os compressores alternativos podem apresentar diferentes nimeros de estagios e
de cilindros. Um compressor com mais de um estagio é aquele que comprime o ar até a
pressdo de descarga em mais de um processo de aumento de pressdo, mas nao

necessariamente em mais de um cilindro, como pode ser observado na Figura 2.
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b)
Figura 2: Compressores multiestagiados: a) Compredsg dois estagios; b) Compressor de
trés estagios vertical, c) Compressor de trés astajorizontal

Fonte: Silva (1977)

Ja os compressores policilindricos possuem mais de um cilindro. Aumentar o
namero de cilindros ao invés de aumentar um clindro e seu dimensionamento pode ser
explicado pelo fato que existe um tamanho 6timo de cilindro em relacdo ao peso (peso
minimo), e assim € possivel uma reducdo de massa, e melhores destribuicdes do torque
no tempo ja que enquanto um dos cilindros opera na fase de descarga ou compresséao, o
outro opera na succdo ou expansado (SILVA, 1977). Alguns tipos diferentes de

compressores policilindricos podem ser vistos na Figura 3.

— T e e s ; - . —
. L) a0
|
a) b) c) |
Figura 3: Compressores Policilindricos: a) Cilindr@m V; b) Cilindros em duplo V; c)
Cilindros em angulo reto

Fonte: Silva (1977)

Construtivamente, 0s compressores alternativos podem ser abertos, semi-
herméticos ou herméticos (BASSETTO, 1997). Enquanto que nos compressores
alternativos abertos o motor € exterior a carcaca, necessitando de selo para vedacao, nos

herméticos e semi herméticos a carcaca contém o motor, sendo nos semi-hermeéticos

13



possivel a remoc¢éo do cabecote para acesso as valvulas e pistdes.

1.3. Justificativa

Como ja citado, muitos estudos tém sido realizados no ambito de: aumentar a
eficiéncia térmica e mecéanica de compressores alternativos, aumentar a vida util e
diminuir ruido e vibragdes. Serrano (2002), por exemplo, faz mencédo aos trabalhos
desenvolvidos para a melhoria termodinamica do processo nos compressores, assim
como desenvolve seu trabalho a cerca de parametros termodinamicos, como
transferéncia de calor do sistema, distribuicdo de temperaturas, diagramas de pV na

camara de compressao, entre outros.

Um dos pontos principais que tém sido analisados sdo as juntas presentes em um
sistema pistao-biela-manivela dentro de um compressor (assim como em outras maquinas
qgue utilizem tal sistema, como motores de combustdo intera, porém com enfoques
diferentes, ndo priorizando tanto o ruido, por exemplo). Um dos parametros importantes
nas juntas do sistema € relacdo entre a espessura do filme de 6leo e a rugosidade do
material, que pode determinar o regime de lubrificacdo, como sendo marginal, misto ou
hidrodindmico (DURVAL, 2005). Tal parametro tem influéncia direta sobre o atrito em tal

junta e a vida util do sistema.

Gerardin (2005) desenvolve um trabalho de mancal hidrodinamico em um motor de
combustéo interna (também dotado do sistema pistao-biela-manivela), para se chegar as
distribuicdes de presséo e de forca no mancal e folgas, de acordo com a pressdo de
combustdo. Em sua andlise ele utiliza a equacdo de Reynolds e 0 método de elementos
finitos para o modelo do mancal hidrodinamico, comprovando a eficiéncia e precisdo do
meétodo nos resultados, e sugerindo, para um trabalho futuro, a utilizacdo de um sistema

com integracdo pelo método de Runge Kutta para a resolugdo com o sistema dinamico.

Ja lzuka (2007) desenvolve um trabalho especificamente para compressores
herméticos, onde utiliza para o modelo matematico dos mancais hidrodinamicos trés
metodologias diferentes: métodos dos elementos finitos, método das diferencas finitas e
método dos volumes finitos, comparando as trés metodologias para os casos analiticos de
mancais curtos e mancais longos e posteriormente realiza uma simulagdo para mancais

finitos. Ele também se preocupa com a dinamica do sistema pistdo-biela-manivela,
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utilizando o método de Newton Euler para a integracdo temporal. Os resultados obtidos
sdo bem proximos aos resultados analiticos, e a sugestdo para trabalhos futuros é a
comparacao com softwares comerciais, assim como a inclusdo da cavitagdo no mancal e

elasticidade no alojamento.

Couto (2006) também estudou a lubrificacdo de compressores alternativos, criando
uma bancada experimental para a comparacdo com resultados teoricos fornecidos pelo
método de elementos finitos, considerando também efeitos elasticos. Os resultados,

porém, nao foram possiveis de serem replicados no trabalho de Izuka (2007).

Estupifian e Santos (2007) criam um modelo de compressor alternativo com pistao
considerado como particula, biela e manivela como corpos rigidos e eixo do mancal
flexivel, com mancal hidrodinamico curto, utilizando o método de elementos finitos para os
elementos flexiveis e sistemas de dindmica de multicorpos para o0s corpos rigidos. Eles
mostraram que embora o desbalanceamento do sistema afete a dindmica da o6rbita do
eixo no mancal hidrodinamico, ndo afeta significativamente as forcas e espessura do filme

de 6leo.

Outra parte muito estudada no sistema pistdo-biela-manivela, mas que nao sera
abordada nesse trabalho, podendo ser adicionada para um sistema mais realistico no
futuro, € o angulo que o eixo do pistdo forma com o eixo do cilindro, também chmada de
movimento secundario do pistdo, que, embora pequeno, interfere em muito no atrito entre
cilindro e pistdo e nas interagfes hidrodinamicas entre eles. Prata, Fernades e Fagoti
(2001) chegam a conclusdes sobre melhores valores de escolha para posicionamento do
pino do pistdo, assim como viscosidade do fluido lubrificante e folga radial entre saia do

pistao e cilindro.

Percebe-se portanto um esforco no sentido de melhor entender os efeitos nos
mancais dos compressores alternativos. Porém, até ndo se deu muita atencdo ainda as
juntas da biela com a manivela e da biela com o pistdo, e seus efeitos para a vibracao e
sobre o atrito do sistema. Este trabalho possui a finalidade portanto de estudar melhor o
efeito em tais juntas, considerando somente a teorica de mancais hidrodinamicos curtos,
e descobrir quais forcas, excentricidades e Orbitas nessas juntas, além do mancal

principal, também ja estudado por outros autores.
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2. Revisao Bibliografica
2.1. Vinculos, graus de liberdade e coordenadas gen  eralizadas

Para descrever no espaco com relacdo a um refaranposicdo de uma particula que esta
completamente livre de quaisquer restricbes narsmumento, € necessario se utilizar um sistema
de 3 coordenadas, onde uma delas necessariamerdgea der a dimensao de comprimento
(existindo a possibilidade das outras duas cooddEnapossuirem ou nao dimensao de
comprimento). Nota-se que, nesse caso, pode-sar\vgualquer coordenada desse sistema de
coordenadas da particula sem alterar as outras. mptae de sistemas de coordenadas muito

utilizados sdo: cartesianas, esféricas e cilinsirica

r_)i: f (X| ’ yi )Zi)= f (r| lgi )¢i)= f (r| )hi ld)i)
De uma forma geral serdo chamadasXje , X, e X;; as coordenadas da particula i:

F= (X 1% 5, % 5)

Se o0 sistema a ser analisado possuir um determinach@ro N de particulas, livres de
quaisquer restricdes, sera necessario um numerweézes maior de coordenadas para descrever

completamente tal sistema:

f (X110 %10 X19)
= f (X2,1’X2,2' Xz,s)
ry=f (XS,l’ X321 X3,3)

f (X410 Xa20 Xa3)

r,=
=" (XN,l 1 Xn2 XN,3)

Se for considerado o caso bidimensional sera ré@gessm sistema de apenas duas
coordenadas para descrever a posicdo da partiPoldanto um sistema com N particulas

completamente sem restricdes sera descrito porinnero duas vezes maior de coordenadas:
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,
N
Il

n="f (XN,l ) XN,Z)

Por outro lado, percebe-se que em muitas situag@eparticulas possuem restricbes aos
seus movimentos, restricbes essas chamadas deosgin®inculos sdo, como Lemos (2007)

descreveria:

“Vinculos sao limitacdes as possiveis posi¢coedariades das particulas
de um sistema mecanico, restringindo a priori orseuimento”.
Quando se introduzem vinculos ao sistema, peraelees ndo mais é possivel alterar todas
as coordenadas de maneira independente. Assim mmsilas introduzem relagbes entre as

coordenadas. Se um vinculo € dito holdnomo, tatés sera dada por:

f (Xl,l ! X1,2 ’ Xl,E' XZ,J ! X2,2 ’ XZ,E’X3,J ! X3,2’ XS,E L XN,] ! XN,Z ’ XN,3 ’t)=o

Dessa forma, se o sistema possuir S vinculos holésppode-se perceber que esse sistema
apresentaL=3N—-S grupos de coordenadas independetes entre si, cbhargeals de liberdade.
Como exemplo, considere um sistema onde uma plarfpode percorrer livremente a borda de um

cilindro como mostrado na figura 4:
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Figura 4: Particula livre para percorrer a borda den cilindro

O sistema possui um Unico vincule?+ y*=R* . Assim, N para esse sistema é 1 (por s6
existir uma particula) e S € 1 (um Unico vincupmytanto L sera L=3N-S=2 . Percebe-se que
nesse sistema, as coordenadas cartesianas x gistetoa sdo dependentes entre si, e a coordenada
z independente. Pode-se dizer entdo que o grupoatdenadas composto por x e y é independente
do grupo de coordenadas composto por z.

Cada grupo de coordenadas independente pode der ssbstituido por uma Unica
coordenada que descreve completamente tal grupassen obtém-se o numero minimo de
coordenadas que descrevem completamente o sisdam@xemplo acima, as coordenadas x e y
poderiam ser substituidas p@r , e assim o sistema poderia ser completamente itbegar
apenasf e z.

Tais coordenadas independentes sdo as coorderatiaslgadas de um sistema e sdo em
guantidade iguais aos graus de liberdade do sisteenao aqui designadas pela letja.

2.2. Graus de liberdade de um corpo rigido

Um corpo rigido € definido como um corpo constituéte um namero finito de particulas,
no qual a distancia entre duas quaisquer ndoemia@t Dessa forma, pode-se dizer que entre duas
particulas quaisquer do corpo rigido, existe untwim que pode ser imaginado como uma haste

fixa. Esses vinculos séo os vinculos internos @anmmo rigido.
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Assim, se um corpo rigido possuir N particulas,gpadser descrito por 3N coordenadas
dependentes. Porém, escolhendo-se trés partiaudésgger do corpo, percebe-se que a primeira
dessas possui N-1 rela¢des de vinculo com todastess N-1 particulas. A segunda particula tera
N-2 relacdes de vinculo com as outras N-2 partéoglee sobraram, e, da mesma maneira, a terceira
particula possuira N-3 relagdes de vinculo comaaiqulas que sobrarem.

Em outras palavras, ao se observar a primeiracpkatiela pode fazer um percurso qualquer
no espaco. Ja a segunda, por estar restringideaapEsie se mover em uma calota esférica ao redor
da primeira. Ja a terceira podera percorrer asetgfo entre uma calota esférica ao redor da
primeira e outra calota esférica ao redor da segungdseja, uma circunferéncia.

J& a quarta particula, teoricamente poderia pe&rcarintersec¢do de trés calotas esféricas,
ao redor das particulas anteriores. Isso impliatidar que tal particula poderia ocupar dois pontos
no espaco. Porém, tal proposicao € logicamente,falsis para ir de um ponto para o outro, a
particula precisaria percorrer todos os pontoseeeles. Assim, dada a configuracdo inicial do
corpo, a quarta particula e as restantes, s6 podepar um ponto.

Portanto, um corpo rigido, sem a acéo de vincutemos, € descrito por 3N coordenadas
dependentes dN—1)+(N—2)+(N—-3)=3N—-6 relacGes entre tais coordenadas (ou vinculos
internos do corpo rigido). Assim sendo, tal corfgido possuira 3N—(3N—6)=6 graus de
liberdade e também 6 coordenadas independentes.

Tais graus de liberdade do corpo podem ser tamta@lunzidas em:

— Translagéo em 3 diregdes linearmente independentes,

— Rotacédo em torno de 3 eixos linearmente indepeadgent

Da mesma maneira, para o caso bidimensional esaedbeduas particulas, a primeira com
N-1 relacdes independentes de vinculo com o resgistema e a segunda com N-2 relagbes. Assim
sendo, quaisquer outras poderdo ser expressasrerostelessas duas. Portanto o sistema tera
2N—(N—-1)—(N—-2)=3 graus de liberdade e coordenadas independentes)dauaso
houverem vinculos externos.
Os graus de liberdade do corpo no caso bidimenssaoa

— Translacéo nas 2 direcoes linearmente independgunéedefinem o plano, e ;

— Rotagéo em torno do eixo normal ao plano considerad

No sistema pistdo-biela-manivela existem trés cornpgdos, e portanto, se hdo houvessem
vinculos entre tais corpos e entre esse sistensaagr@dores, haveriam 9 graus de liberdade (caso
bidimensional). Porém, existem no sistema 8 virecubesses, 4 sao entre 0s corpos rigidos:

— 2 vinculos no ponto de contato entre biela e mémivenpondo que esse ponto devera

19



sempre ser coincidente para os dois corpos (oy gaingindo translagcdo nas duas
direcdes possiveis);
— 2 vinculos no ponto de contato entre biela e pigt@vamente restringindo translacao
nas duas direcdes possiveis).
Repare que seriam trés os vinculos entre os cofgio®s quando fosse analisado o caso
tridimensional. E existem também 4 vinculos daddegpdois apois do sistema com os arredores:
— 2 vinculos no centro de rotacdo da manivela (regtrdo todo o movimento desse
ponto, e assim qualquer outro ponto estara semmesena distancia de tal apoio), e;
— 2 vinculos em dois pontos diferentes no pistadringgndo em ambos o movimento em
uma direcéo e deixando a direcao normal a essari@npente ao plano de analise) livre.
Dessa maneira o sistema sO possui um unico gralibelelade, e sera completamente
definido por uma Unica coordenada, podendo todasitaas coordenadas ficarem em funcao desta.
Mais adiante, na modelagem do sistema serdo mastrad relacbes entre as coordenadas

dependentes do sistema.

2.3. Trabalhos Virtuais

O trabalho que uma forca genérida, realizada em uma particula i é dado por:
W= F.dr, ,

onde di’, é a variacdo infinitesimal do vetor posicdo daipala ; . Como IEi € uma forca
qualquer atuante na particula, fica evidente quie ger também a resultante das forcas na particula
(pode se demonstrar fazendo a soma dos trabalbbzacs pelas diferentes forcas atuantes na
particula).

Como o trabalho realizado por uma for¢a é o prodstalar entre ela e o deslocamento da
particula, percebe-se que quando estes forem mkcpéares o trabalho sera nulo. Esse € um caso
de particular interesse para as forcas vinculgets, possuem direcdo sempre perpendicular ao
deslocamento da particula em que atuam, quandm fovasideradas variagdes instantaneas.

Desse modo, convém definir um deslocamento instantadpara que todas as forcas
vinculares sejam perpendiculares a tais deslocamenrtassim os trabalhos provenientes destas
forcas, nulos.

Introduz-se entdo o conceito de deslocamento Vjrtwaseja, deslocamentos considerando

que o tempo nao varia. Se for utilizada a expreas&erior com variacao infinitesimal virtual da
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posicdo da particula@; ), e forem separaradas as forcas em forcas viraarsj(aifi,VinC ) e ndo

vinculares ( F; .. ), obtém-se:

—

ST, +E

i, nvinc i i,vinc

sW, =F, ST,

'5ri=Fi,nvinc i
pois o0 termo Ifil\,mc-ér*i € igual a 0. Percebe-se portanto que o trabaltoavide uma particula
depende somente das for¢cas ndo vinculares e dmdesnto virtual desta.

Assim o trabalho de um sistema em um deslocament@hinfinitesimal sera:

N N

=2 0W, =2 F

i i
2.4. Algumas relagcdes importantes

Antes de se comecar a deducdo das equacdes dedgagae a pena demonstrar algumas
relacdes que serao futuramente utilizadas.

Como ja foi dito, o sistema pode ser completameafdscrito pelas S coordenadas
generalizadas. Dessa forma, uma coordenada j aqgradiguuma particula i qualquer desse sistema,

podera ser descrita por uma func¢do das coordegadasalizadas:

X ;=1(d;,0,,05,..-,9¢, 1)
Assim como a posic¢éo total da particula i:
7i=1(0,0;, 05,1 0, t)

Assim, variacOes infinitesimais d& ; e de T; podem ser descritas pela diferenciagédo

das expressdes anteriores:

S a XJ
0 X ’_Zk: 6qk 6qk at ot
> 8F dr;
5=, — +——6t
=2 50,00 G

Se houver um deslocamento virtual, a variacao iteBimal da posicdo da particula i ndo

dependera do tempo, como ja antes visto, portanto:

Sé’r"

on=2 50
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E se tal expresséao for derivada no tempo, comeiagé da posicao da particula em funcao
da variacéo da coordenada generalizada ndo dedendmpo, sera obtido:

.~ < OT
sT=> —L5d, .
' ;aCIk %

Se essa ultima expressao for derivada com relacdmaa velocidade generalizada,
or,
qualquer, comod g, sé depende dgi, quando k=h , e a—q' ndo depende del, (nem
k

quando k=h ), obtém-se:

S or or or. o or;
. oy =—6qg.| o|=—6q,| o|=—-6d ol=—=6¢ o|l=—=-64d
or, (%ka %»_(6% qJ+ &mz %) (6% qJ (6% q%_an

00 00 00 odh 00 00 oqh

Vale relembrar que essa expresséo sO € validadeafacamentos virtuais, e que h € uma
. L . or, Oor,
coordenada generalizada qualquer, e portanto podeialmente se dizer queaF'=a—q'
k k

=

E, por ultimo, se o termoﬁ for descrito como:
k

—’i S azr—.’l azr
=z 6q

or i
-5+ —-6t .
0q, T oq-aq, ' aqcat

Ao se derivar no tempo, obtém-se:

gjor\ & @ @ _ g (son  on| of,
Ay 00,00, oq.ot 0q\T oq, ot 00,

Resumindo, para deslocamentos virtuais valem asrgeg expressoes:

S or.
5?.:2_"5% , €,
k Ok
. & OF
6r|=z_l'6qk ’
Tk 00k
of_of,
od, o9,
d [OF)_ar,
dt\ag,) ods

2.5. Equacdes de Lagrange
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Como o que se pretende demonstrar € que o movirdenion corpo esta relacionado a sua
energia e as forcas nele atuante, comeca-se adtepata segunda lei de Newton, que relaciona a
resultante de uma particula com a aceleracaodtekeguinte forma:

Fi=m-r, .
O principio de D Alembert diz que se o termqui for considerado como uma forca

inercial, tal termo poderé ser jogado para o olaido da equagdo e assim a somatoria das forcas
serd nula. Desta forma, obtém-se:

N

2. (F—f

i
Il
o

N
Otermo Y, F,-6F, pode ser entdo substituido utilizando resultando em
i

N

2F

N
Z i nvine T i vinc) ’
i

O’z
0
-MZ
é
3%

N S ar—-’l
z |nvinc'z_'6qk=

i o 00

Como ja visto, o vetor de posicdo da particula dgposer descrito por coordenadas

cartesianas, da forma;=r, ,i+r; ,j+r; ,k , e logicamente o vetor velocidade da particula i
podera ser escrito pof’i=ri,xi+ri,yj+ri K Assim, o termom:-r; pode ser reescrito da
seguinte forma:

—i ._> =i a l . 2..
mri_dt(mri) dt[ . (Zmri,x

arl,x ari,y i,z
_d|[0E, . OE, . OE, »
“dt\or, o, " or,

Portanto:

| .1 _.6 —
~ dt ari’xl or., = ot — 0Q, A
N S oE, . O0E, . OE, .\ OF
=ZZ£ X - Y.+ , Z. k| ! 5qk
—edtlor, 8r|,y or,, 00,

pode ser escrito como:

5 S d (96, ; 0, 0B, o
emo Zat\ar, ' ar, okt ot | aq,
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—»

0E, ; OE, . 0E, .

) OF, ;, OE, +, OE,
or., ot T,

ar J+ari,1

S
d
25t

ild[of
aqk dt\og,

Rt

Logo, utilizando duas das relacdes antes deduzidas:

S g -

d|[0E,. OE, . OE, .\ or 0E, . OE, . OE, .| or,

el 0+ 4+ Z. k|- ! + Y. 14+ Z.kl !

2 qy (anx' or,, ot )aqk] Z[ar i or, o, ]aqk

C > A A, r( t aﬂ f arixl“_{_ariyA-_i_arikR A

om r;=r; ,I+r; +r, ,K 0 termo —— Tica n n - ssim, O
AT o4 g 0g, ' od

t OE, ., OE, . 0E, . or, oa
ermo 8I’i 6r j ari,z aqk ICa.

0, . 0E, . 0E, \[0f,. ar,. of,.
or ' or,, g or,, J\q, ' aq, 1" aq,
OE, of,, 8Ey ot,,, O, 0, _OE, 0E, 0E, 0E

=t —=+— —= —=
Ofiy 0Oy Of;y 0dy OF;, 0C an 00 0Qx 00

Portanto:

ZN: i d (0B} 0B} 50 _
; - | nvinc’ aqk dt aqk aqk k™
No entanto, os deslocamentos virtuais das coordsngeneralizadas nédo sdo dependentes

entre si, como ja antes visto. Portanto, a Unicaeina de se anular a expressao acima, sera tendo

cada coeficiente de cada deslocamento virtual ig@a{Martins, 2006), entéao:

N N a—’_
z F nvmc'L_i(aE)—i_a_E =
i ’ oq, dt\od,) aq,

1
Na formula deduzida possuem-se termos em func@&melgia cinética, mas ndo em funcéo
da energia potencial. Porém realizando mais alguraasformacdes podera se obter uma férmula
mais geral em fungcdo da Lagrangiana do sistema,égaediferenca entre a energia cinética e

potencial.
As forcas néo vinculares da formula anterior podendivididas em forcas derivadas de um

potencial, e forgas n&o conservativas, da segiontea:

-

- OV, . OV, . 0V,
|nV|nc C,I ar ar’
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onde F . ; € a resultante das forcas néo conservativas n&@wolaies atuantes na particula i, e

V; o potencial das forcas conservativas atuantes &mbistituindo na férmula deduzida, obtém-

se:

N
OV . 0V . oV Of d[0E\, 0E|_
Z( ~ 3, (6X'+6yj+6zk)6qk dt(ﬁqk)+6qk)_o

Como ﬁ:ri,xf+ri’y]+riyzk :

@ A O |xA 8r.i 4 ar.izA ar.ix 8r.i ar.iz
8V|+8VJ8Vk v 2 =8V. ,+8V. ,y_i_@V. 2z
ori or,, aor, 00, 04, 00, or,, 0q, or;, 0q, 0or,, oq

_oV
oq ’
portanto:

N oT; —

Z nc i _i(aE)'i'a(E V) =0 .

i oq, dt\od, 0 O

oV N (=  of, d[8(E-V)\ 0(E-V)
=0 Zi_ Y =
Mas, como =~ 24, , Z,( ”C'ﬁqk dt( 74, + aq, 0 .

E, finalmente, chamando de L a lagrangiana domsistende L=E—-V , obtém-se:

d(oL| oL <= OF
dt(an) —ZF TG

2.6. Energia cinética

Trés propriedades, que serdo antes abordadas yeelanportancia na determinacdo da
energia cinética de um corpo rigido, sdo: a relagéie as velocidades de quaisquer dois pontos do

corpo rigido, a posicao do centro de massa do agomatriz de inércia do corpo.

2.6.1. Relacao entre velocidades de um corpo rigido

Como ja visto, a definicdo de corpo rigido impdes glois pontos quaisquer do corpo
estejam sempre a mesma distancia e assim o conpm wm todo pode possuir rotacdo em até trés

eixos linearmente independentes. Para tal vetor méacdo sera aqui utilizado
\7v=WX.T+Wy.T+WZ.k .

Considere um referencial fixo no espaco (ao queloseefenciadas posicdes absolutas) e
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outro fixo a um ponto (C) qualquer deste corpbr@terencial caminha junto com C, porém nao
roda solidario ao corpo). Todo o resto do corpopwésuir rotagdow em torno de C quando se
obervar do refencial mével. Assim, a velocidadeohlta de dois outros pontos P e O quaisquer
serao:

dRep

T +V = WXR,+V,. € V= +V =WX R +V, -

Vo= dt

Assim, a velocidade relativa entre os pontos Pser@:
Vo=V =Wx R, —WX R, =WX Ry, .
Encontra-se entédo a velocidade absoluta P em fudgt&elocidade absoluta O:
Vo=V, +Wx Ry,

2.6.2. Posicao de centro de massa de um corpo rigido

O vetor posicéo do centro de massa de um corporégdefinido como:

onde mM; é a massa de uma particula do corpo rigido deticplais, Ry sua distancia ao ponto

de referéncia e M a massa total do sistema. A itApoia do centro de massa é descrever a
aceleracdo do corpo devido as for¢cas externasapbfadas nas suas respectivas dire¢cdes. Porém, o
centro de massa nado tem a capacidade de deserew@leracdo rotacional devido as distancias
normais entre o centro de massa e as forcas emsistplicadas.

Para isso, introduzem-se as matrizes de inércia.

2.6.3. Matriz de inércia de um corpo rigido
A matriz de inércia de um corpo rigido € definidano (onde mM; continua sendo a massa

de uma particula do corpo, &' , ¥;' e Z' sdo as coordenadas cartesianas da particula em

relacéo ao refencial adotado):

26



n A A A
[J]=Z m=x"y" X +z -y
I %"z —yz XUy

As matrizes de inércia possuem a capacidade sorderdescrever a aceleracdo rotacional

do corpo devido as distancias normais entre ocel@massa e as forcas no sistema aplicadas.

Com tais propriedades, sera agora encontrada gi&renética do sistema com relagdo a
um refencial fixo. A energia cinética de uma paitdicdo corpo com relacdo ao referencial fixo é

dada por:

Utilizando um referencial movel, fixo ao corpo em ponto qualquer O', pode-se descrever

a velocidade de i como sendo:

V.=V, +WXRy. |

by

onde V*o. € a velocidade do ponto O' EZTO. 0 vetor posi¢do do ponto O' a particula. Assim, a

energia cinética da particula sera:

T = m'(\/_'O"HTV>< RTO')Z
' 2

Como a energia cinética total do corpo é a sonsatta energia cinética das particulas,

segue:

n n n n
Z m'(V_’O""‘TV>< R_i’O')Z VO'Z'Z mi+2'V_’o"\7VXZ mi'R_i’O'+Z m-(Wx R_i’o-)z
T=_ — i i i
2 2

—

O termo Zm-RTO. pode ser reescrito com® R, , e seZm-(\Tvx R,.)> for

desenvolvido com coordenadas cartesianas RRgn e vetor \Tv=wx.T+wy.T+wz.k , resultara

em (PESCE, 2004).

2 MW (Y 2+ Z22) W (X Z %) W (X P Y ) = 2 W W XY = 2 W W X2 =24 W ey 2
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gque também pode ser escrito da forma matricial:

n

im Z +y| ) Zmi'(_xil')/i')

(W, w, w,): Zn:m =Xy D> me(x "2 +z'?)

Ymeextz) Ymeloyz) Y mlx ey

E assim a energia cinética do sistema resultara em:

o VoM +2-V o-M - WX Reg+{W [ I -{w]
- 2

Como no sistema a ser analizado s6 se possuemdilnassdes (x e y), e considerando
n

n
W=w, k=w-k e nomeandoJ=>Y m-(x’+y'?) ,otermo >, m-(WxR')> resultaem:

> mA(Wx R =D, mo(wA(x 2+ y ') =J-w
E a energia cinética em duas dimensdes fica:

T_VO.Z-M +2:V oM - WX Rgo 4 J-W
a 2

2.7. Relacao p-V na camara

Sera abordada nesse trabalho, somente a partentzdii@amica referente ao processo de
expansdo e compressdo do ar dentro da camara geessdo de um compressor aternativo. Dessa
forma, primeiramente seréd explicada a equacao dessgideais, que sera inicialmente utilizada
para uma modelagem mais simples, e depois, a egpaca processos politropicos, que serve para
explicar casos reais. Busca-se com isso uma e@ur@ssa a pressado da camara relacionada com o

volume desta.

2.7.1. Equacdes de Estados dos Gases, Fator de Compressibilidade e Equacéo dos
Gases Perfeitos

Na natureza, observa-se que as propriedades tammpernaressao e densidade (ou volume
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especifico) de um gas ndo sdo independentes. essa € de grande interesse para a engenharia
relacionar tais propriedades. Uma das formas @wvas propriedades dos gases e medir cada uma
delas, para depois contruir uma tabela de proptesgjapara cada gas. Pode-se também obter
resultados aproximados para as propriedades atlavi@smulas que relacionem as propriedades.

Experimentalmente, foi verificado que ao se abax@ressdo de qualquer gas, no limite,

quando a presséo teoricamente € nula, o valor£¥e tende a um ponto comum (obtido por

extrapolacdo, j& que ndo é realmente possivel cleege valor de pressdo nula em um gas). Tal
ponto é chamado de Constante Universal dos Gas@sagui designado pela letra R e tem o valor
de R=8,31/KJ/Kmol-K

O fator de compressibilidade de um gas é definmoa Z=np_R\'/T . Oserva-se que quando

a presao tende a zero, o valor de Z tende a lrPa@se aumentar a pressao, nos gases reais Z nao
€ constante, mas sim uma expansao de infinitosoteriawo redor de V ou de p, com coeficientes
dependentes de T (chamados de coeficientes vigass,corrigem o fator de compressibilidade
considerando as forcas de interacbes entre as utedédo gas). Tais coeficientes sédo de dificil
obtencéo, provenientes da mecanica estatisticpifSha006).

Para evitar o problema de da determinacdo dosceaies viriais, muitas formulas foram
desenvolvidas por diferentes autores para expticaomportamento de um gas que se afasta do
caso ideal. Sdo as chamadas equacdes de estadymsdese sao validas (ou melhor dizendo, sédo
mais exatas) para determinados intervalos de muagulies do gas. Algumas das mais famosas séo:
equacéao de estados de Van der Waals, equacéo liehRé@don e equacéo de Berthelot.

Perceba porém, que se Z for considerado constagteka 1, obtém-se uma féormula geral

bastante simplificada para as propriedades dos geis@mada de Equacao dos Gases Perfeitos:
pV=nRT .

Pode-se expressar essa férmula também pela mass# eelo namero de moles,

adicionando o termo do peso molecular:

_mRT1

pVM

Essa formula n&o considera a interacdo entre a&cmabk do gas, e assim chama-se o gas de
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Gas Ideal ou Gas Perfeito. Tal aproximagdo chega berto da realidade quando o géas
considerado:

- Tiver pressao baixa relativa a sua pressao &yibig;

- Tiver temperatura alta com relacao a sua temperatitica.

Assim, ao se reorganizar os termos da equacaomusdeslacionar a pressao, o volume e a
temperatura de um determinado gas da forma (j& aquienero de moles de um recipiente ndo muda

e R € uma constante):

V \Y
P. 1=p2 2=nR
T, T,

E assim, quando for considerado um processo ismgrm

p,V.=p,V,

2.7.2. Processos Politropicos

Como ja foi explicado no item anterior, para seephtma aproximacdo mais exata das
propriedades do sistema, ndo se considerando igasés, seria necessario utilizar um método que
recorra a uma tabela, ou equacdes de estadosmEet, no caso do gas dentro da camara de
compressdo de um compressor, 0 processo pelo qgas gpassa € um processo especial, que
permite relacionar facilmente P com V.

Sera considerado que a expansao e compressa@safedtro da camara de um compressor
Sa0 quase estaticas, isto é cada estado pelo qoal@essao passa pode ser considerado um estado
de equilibrio. Naturalmente na realidade ndo éipelssm processo quase estatico, mas para efeitos
praticos a maioria dos processos de compressgua@sio se aproximam muito de um.

Dessa forma pode se dizer que o processo é patitidp obedece a seguinte relacao:
p,Vi=p,V5=C ,

onde n € uma constante que depende do gas e dasa@gpau compressdo (por exemplo:
temperatura, pressao ou até o calor rejeitadoaho) Ci

Fica assim claro o porqué de ndo se precisar ecammétodos mais complicados como as
equacgOes de estado, ou a uma tabela: para relaagrassédo com o volume em uma compressao

ou expansao politropica ndo é necessario saben@etatura do sistema, bastando saber a presséo e
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o volume do sistema em algum ponto dessa expansémnopressao.

Para alguns casos especiais, n possui valoresaprente conhecidos (aqui so serdo tratados
0S casos relevantes para um compressor alternativo)

— Quando se considerar o gas como perfeito em unegsodsotérmico n serd igual a 1.

Observa-se isso também pela formula resultamg? ,=p,V, ;
— Quando se considerar o gas como perfeito e sob rovegso de expansdo ou
compressdo adiabética, n serd igual a k (coefiientre calores especificos, e
C, do gas).

Na prética, para poder se obter o valor de n quesmonda ao processo real, € possivel
medir a pressdo e o volume do gas na entrada & eaitilizar a equacdo de processos politropicos
para determinar n, embora o que mais se faca paedggdo da energia fornecida ao gas é medir a
pressdo ponto a ponto conforme o deslocamentosti@ope integrar a pressdo da camara pelo seu
volume.

Nesse trabalho, porém, considerar-se-ao duas &ésalistintas com gases perfeitos: aquela
em que ha troca de calor ideal do sistema com o amabiente, possuindo-se assim um sistema
isotérmico; e aquela em que ndo existe troca d&r c@m o ambiente, caindo no caso de um
processo adiabatico. Deve-se deixar claro quelo de&um compressor alternativo é tdo veloz que
geralmente a troca de calor com o ambiente, ptr, &cpequena, e assim o processo adiabatico se
aproxima mais da realidade. A refrigeragcéo, potaaleou por camisas com fluidos refrigerantes
serve apenas para aumentar a troca de calor canbierge para diminuir o trabalho que deve ser

entregue ao fluido, embora o processo continueimxro adiabatico (Dossat, 2001).

2.8. Modelo de Mancais hidrodindmicos curtos

Quando se tem o interesse na andlise da lubrificacdo entre as diversas partes do
sistema, € necessario se considerar o mancal do sistema, assim como as diversas juntas,
nao mais rigidos, e sim os efeitos das excentricidade e do filme de 0Oleo presentes. Um
diagrama simplificado de um mancal nédo rigido pode ser observado na Figura 5.

A lubrificacéo das diversas juntas e mancais do sistema abaixa significativamente o
coeficiente de atrito entre as partes com movimento relativo, reduzindo assim também a
geracdo de calor em tais partes. Além disso, existe também uma reducédo local de
temperatura, devido ao efeito refrigerador causado pelo lubrificante no local. Outro efeito

proveniente da lubrificagcdo é o aumento da vida util do sistema, ainda mais quando a
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lubrificacdo é considerada mista ou hidrodindmica, como ja visto antes, j& que o contato

entre os diversos componentes rigidos € menor, ou inexistente.

Y

Figura 5: Esquema de um mancal né&o rigido

Kirk e Gunter Jr. (1970) realizam uma revisao bibliografica em seu trabalho sobre
os diversos autores que estudaram o campo de pressdo em mancais hidrodinamicos. Eles
também derivam a equacdo de Reynolds da equacdo de Navier Stokes para fluidos
incompressiveis e, em seguida, utilizam a hipotese de mancais curtos para a comparacao
com mancais finitos.

Primeiramente eles utilizam coordenadas rotativas e depois realizam uma
transformacao de coordenadas, para coordenadas fixas, chegando na equacéao:

111 o [haP| o ([h 6P
6| RR00\u 00) 0z\u 0z

_ oh, ,0h
=(w,tw)) 89+2 ot

onde 0 € o angulo medido a partir do eixo x positivo, no sentido horario, e h é a
espessura do filme de dleo.
Quando considerado o modelo de mancal infinitamente longo, podem ser ignorados

os efeitos de gradiente de presséo e fluxo de fluido em z, resultando em:

1 o (haP oh _ oh

00 ot '

e quando considerado o modelo de mancal curto, pode-se dizer o mesmo, mas na direcao

radial, resultando em:

_____ = =(OU +w)a_h+2@
60z\u 0z T80 T ot

Kirk e Gunter Jr. (1970) mostram também que o erro que se comete pela

32



aproximacdo de mancal curto € muito pequeno a partir de mancais com diametro duas
vezes maior que o0 comprimento, e também que tal erro € maior conforme a
excentricidade aumenta.

Zachariadis (1998) propde a integracédo da equagéo para mancais hidrodinamicos
curtos, chegando assim as for¢cas que surgem no mancal. Dessa forma, as for¢cas que

surgem no eixo X ey, respectivamente, propostas pelo modelo sao:

._—4-e-a(e)-cos(y)—77-b(e)'Sin(Y)- .
2-a(e)® 1

. _—uwRL® _(w_z.y). m-e-a(e)-cody)—4€-sin(y) -
g ¢ 4a(e)’

F,= _ﬂ.C?LS' -(w—z-y)-(4'62'(:08(3/);;';'?(e)'sm(y))_+'e--Tr'b(e)'Cos(g?;é;'a(e)'sm(y)- |

onde a(e)=(1-€°)° e b(e)=(1+2-€?)

Como a excentricidade que existira entre o mancal e o eixo é da ordem de
micrémetros, percebe-se que tal excentricidade pouca influencia trara sobre a posicao do
pistdo. Porém, é fundamental poder simular tal excentricidade para saber como funciona a
vibrag&do do conjunto e assim conseguir dimensionar os componentes do pistdo de forma
a otimizar a dindmica do compressor, assim como determinar o atrito existente no mancal
ou junta.

A férmula do atrito existente em um mancal hidrodindmico proposta por , considera
ambos aspectos de atrito entre as asperezas dos elementos do mancal, assim como a

lubrificagao hidrodinamica do sistema:

2
Tvisc= f m'kn(e)'c'(e_etr)'A'Sgn(w)+ LIuR ) 27: 05 W
C (1-€)

onde f, é o coeficiente de atrito entre os materiais, K,(€) é a dureza das asperidades,

€, é a excentricidade limite entre lubrificacdo mista e hidrodinamica, e sgr(w) € o
sinal de w
Percebe-se que quando a lubrificagcdo for somente hidrodindmica e n&o mista, o
primeiro termo da equacao desaparece, resultando em:

LuR® 27
T. .= . .
visc C (1_62)0‘5 w

que € a formula que sera usada na modelagem do sistema, por simplificacdo (ou seja,
considera-se que a rugosidade é desprezivel, embora isso ndo seja verdade em muitos

casos), para se entender os efeitos somente da lubrificacdo hidrodinamica do sistema.
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3. Modelagem do Sistema

Para a modelagem do sistema, sera inicialmenieagkl um sistema simplificado, no qual
serdo obtidas as equacdes diferenciais do sisttmaseguida, e por passos, serdo introduzidos
Nnovos conceitos e o sistema a principio simplificadra trazido mais proximo a um compressor

alternativo real.

3.1. Sistema 1: pistdo-manivela, com torque externo linear

Nessa primeira modelagem, considera-se que nansisgemente o pistdo e o volante
possuem massa, e que o torque fornecido pelo néotorearmente dependente da velocidade
angular do volante (comeca do maximo e chega armenotacdo de operacdm ). A figura 6

ilustra o sistema:

X

¥

Figura 6: Sistema 1

Primeiramente acham-se as rela¢des de vinculo antterdenada® e x em funcdo da

coordenada ¢ . Iniciando com 6 , do sistema tem-se a relacéo:

. . . e . .
e-sinp=l -S|n9—>sm9=|— ‘Sin=r -singp

E, portanto:

1—(sin6)’=1—(r-sing)*=(coso)*—cosd=V1-r*sinp ,
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(somente é verdade porgug nunca estara no 2° ou 3° quadrante, portaraed serd sempre

positivo).
Derivando obtem-se:

2 - . 2 . . .
0-sino="—@ Slr;(p. CZOS(p—>9= reo Slrz](p. czoscp_ 1 __Io 2(:o§<f
V1-rZsin (0] Vi-—rZsin @ I-Sinhp V1—rZsin [00)

Derivando novamente:

rcosp |, e —r-sinp  r’cos @-sing
—r%sin‘e Vi-r2sifp (1-r2sinfp)¥?

=hT
E tornando a cordenada x em funcaede
Xx=—e-cosp+-cos0=—e-cosp +l-V1-r?sinp .
Derivando no tempo:

(I-r*¢-singp-cosp)

V1-r?sin‘p

x=e ¢-sinp—1-0-sind=e-@-sinp—

Derivando novamente:

%=e d-sinp-+e-p>-cosp—|-0-sind—0%cosh=
. |-r?-sing codtcosp |-r*(sinp—cose) |-r'sin’p-code

=@-|e-sinp— _
Vi-r?sinfe V1-r%sin‘p (1-r2sinf@)¥?

Utilizam-se agora essas relacfes para se achargieginética do sistema em funcdo de

+@°

e-cosp+

¢ que serd a coordenada generalizada das equac@iagrdage. A energia cinética no volante

é:

E a energia Cinética do Pistéo:

.2 .. 2
T =Myt m | -r@-singp-cosp

-_P. e-@-sinp—
P2 2 (5PN V1-r?sin‘e

Portanto a energia cinética total do sistema é:
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. 2
|-r?.¢p-sing-cosp
V1-r2sinfe

T=T+T p=%- J, @+ my|e@-sing—

Utilizam-se as equacdes de Lagrange para se obtsreuacdoes diferenciais do sistema:

N = ar
d(oL) oL_sg O
dt|odg i ' k
Sabendo que a Lagrangiana do sistema é a difeestigaa energia cinética e potencial do

sistema:
L=T—-U , mas comoU=0 :

) 2
|-r%¢-sing-cose

L
Vi-r2sin’p

T=

1 ) L
= 3+ my|e@-sing—

2

Como a unica coordenada generalizada, que dedody® sistema € ¢ , tem-se:

N —»

d
dt(@cp) ,Z ”°'6(p

Conhecem-se também os esforgos externos, ou sejaya de torque do motor acionador
do pistdo, que é dada por:

N = or, T, .
Z nc,i’ a(p Tmotor TO_E'(P .
Portanto calculando-se todas as derivadas e repag@o os termos, obtem-se:

|-r%(si” @—cog @) |-r*sin’p-cos ¢

e-cosp+ _ _
(1_r2_smz(p)1/2 (l—r2'8|n2(0)3/2

To
TO_EO.(P_(pz.mp'

. I-r-sing -cosp
e-sing — 2 .2 2]
(1—r°sin“p)

2
I-r%-singp-cosp
(1-rZsinfep) 2

J+ mp-(e-sin(p—

Renomeiam-se 0s seguintes termos:

|-r.sing-cosp o
(1—I’2-Sin2(p)1/2 1 S,

A=e-sinp—

|-r%(sip—code) |-r*sin‘p-code
(1-r?sin’p)’?  (1-r>sin*p)*?

B=e-cosp +

Repare que A é o terma  dividido por ¢ , e B é a derivada de Aenp . Obtem-se
assim a seguinte equacao:
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To . .5
@_TO_E'(P_@ 'mp'(A'B)

J,+m-AY)

E assim o seguinte diagrama de blocos no SCICQ&#i7):

A
FHIp FPHT

Mathematical
Expression
-t — | P b Msoape
-
B
.<«‘ - .
vl - Mathematical
-
Profuce

Mathematical
Expression ™
l » -

).

| Espression

TETAp
To

H
/
Jv
+ 4—,_‘ M athematical
Froduct - . I| ™ Epression ™
H :

Froduct

Figura 7: Diagrama de blocos do SCICOS para o sistel

Repare que nele foram utilizados os termos A erB gianplificacdo do diagrama, dentro de

dois blocos “Mathematical Funcion” separados. Dagdima obtem-se ndo soment¢ e ¢
mas também 0 e X
3.2. Sistema 2: Sistema 1 considerando a pressdo do  ar, gas perfeito e isotérmico

Considere agora também a pressdo do ar do cilemrgue o pistdo se move. Porém, por

simplicidade, considere inicialmente que o ar égam perfeito e que o sistema é isotérmico. Dessa
forma, obtem-se o sistema representado pela fRjura
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X

¥

Figura 8: Sistema 2

O sistema, continua sendo composto por: pisté@a b manivela, mas agora existe mais

uma forca externa, imposta pela pressado do armaredde compressao.

2
_(e+l—x)-D Ty

morto™— 4 morto

O volume da camara é:V=V +V . Como esta se

cilindro

considerando que o ar é um gas perfeito, o diagidenam ciclo de pressdo-volume da camara

possuira o seguinte aspecto (figura 9):
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P Y
Prmax 2 1
Pmin 3 A
Vim Vi V

Figura 9: Diagrama P-V do ar na camara (gas pedit

A pressdo do gas da camara durante a fase de ssegaconstante e igual a pressao de
abertura da véalvula de admissao e a pressao nddadescarga também sera constante, mas igual a
pressdo de abertura da valvula de escape. Ja nass oduas fases, a pressdo variara

hiperbolicamente com o volume da camara como diégumcdo dos gases perfeitos para o caso

isotérmico: p,V,=p,V,=n-R-T . Assim sdo obtidas as seguintes formulas parafoedo ar na

camara:
Psucc;e”u= I:)mirw ;
Pdescarg‘ = I:)mev ;
P _ mcompressébR dl operagao__ mcompresséb R-T operaggo

compressad . - .

Marv (e+|—X)'D2'T( ’ el
M ar’ 4 +V morto
=) _ mexpanséb R-T operagaio__ mexpanséb R-T operagio
expansao K -

Mg -V (e+|—X)'D2'T(

ar

4 + V morto]

Para se descobrir a massa na camara durante asléasempressao e expansao, utilizam-se
as condicdes de pressao e volume ja conhecidopahtss 2 e 4 do diagrama da figura 4 (com a

temperatura de operacdo também ja conhecida), mthege assim nos seguintes valores de massa
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de ar na camara:

2-e. D2'7T
m _ Mar'Pmin'V4_ Mar'Pmin'(T—i_Vmorm) ' €5
compresséo R'Toperagéo R'Toperagao

M ar’ I:)max'vz_ M ar’ I:)max'V morto

expanséo= . - .
R Topera(;éo R Toperaqéo

m

Ao se substituir nas equacoes de presséo de ca@preexpansado, obtém-se:

2-eD*m
B Pmin'v4 Pmin'(T+Vmono)
com resséo= = , €5
P \ (e+1—x)-D*m
4 +Vmorto
P _ Pmax'vz_ Pmax'vmorto
expansao Vv - (e+| —X)' D2'Tl' )
4 +Vmono

O resultado das expressodes € logico, pois considergue durante a compressao ou durante

~ mRT . . V. :
a expansaoPV=T=Cte , pode-se utilizar uma condigéo o@' ' conhecida em qualquer

. - . ~ . : ~_ ,mMRT
instante para definir o sistema, néo precisandadéndo o termo em funcéo deM—

Portanto, a for¢a do ar sobre o pistdo sera:

( I:)min_ I:)atm)'-’T' DZ

F ar, sucgéo= ( Psucgéo_ Patm) ‘A= 4 :
_ _ ( Pmax_ Patm)'n' D2 .
F ar,descarga ( Pdescarga_ Patm) A= 4 ’
2-eD*m
Pmin'(T+Vmorto) P '7T'D2
F ar, compress&o- ( Pcompresséo_ Patm) A= e , €,
| (e+|—x)+4'v”‘°”° 4
D
I:)max'vmo ) Pa m' 7T D2
F ar, expansas ( Pexpanséo_ Patm) ‘A= 4.:/ -—= 4
(e+] —x)+—==

D

Os esforgos externos do novo sistema sao:
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N - 6r_’ T . >, 0OX ,»
Z Fnc,ila_(pJ=T0_Eo'(p+Far(_l )%(I

)

Com x=-e-cosp+I-V1—(r-sing)? , a equacao fica:

N Or, T - §l—e ~1=(r-sino)2) -
ZFnc,i'—rl=To——o'<P+Far(—|)'5( e-cosp+1-vV1—(r-sing) )(|)=
: op w op

T

. : l-r%sing-co
=TO—E°-cp—Far~(e-smcp— P CO%p

Vi-r’sinfe

E a equacéo diferencial do sistema €, portanto:

l-r%(sinp—coS ) |-r*sin®p-cofep
e cosp+ 2 .2 U2 2 -2 32
(1-r%sin‘p) (1-r"sin“p)

|~r2~Sin(p~COS(p)

T To e-sin
———@—|esinp— -
Cw V1-r2sin’p

.2
Far_(p 'mp'

p= 3 2
e-sinp— I-r -Sln(p-COS(p)

(1—-r?sin’p)*?

[Jﬁ— my

Com F, jaantes expresso. Usando a mesma nomenclatura @ed® anteriormente:

| -r®.sing-cosp o
(1_r2'3in2(P)1/2 LS

A=e-sinp—

I-r%(sifp—codp) r'sin‘p-codep
(1—r2‘5in2(P)1/2 (1—r2'Sin2(P)3/2 '

B=e-cosp +
obtém-se a seguinte equacao:

T, . .
(b_TO_EO'(p_A'(Far'i_(PZ'mp'B)

(JV+ mp-Az)

O diagrama de blocos do sistema 2 no SCICOS éuwrgeg
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Figura 10: Diagrama de blocos do SCICOS para cesist 3

Repare que neste novo diagrama de blocos aparec®vontermo referente a forca do ar.
Tal termo também é medido no MScope para podemaksar a modelagem do ar dentro da
camara.

3.3. Sistema 3: pistdo-biela-manivela e esforgos ex ternos do sistema 2

Considere agora que a biela do sistema também gosmssa. O novo sistema €

representado pela figura 11.:
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Figura 11: Sistema 3

Onde J, é o momento de inércia da biela com relacdo acopcminum entre biela e

pistdo, e a € a distancia entre esse ponto e o centro de rdadsala.

Jv'(PZ
2

Novamente a energia cinética do volante seFa= , € a energia cinética do pistao

2 2 . . 2
|-r°-g-sing-cosp

Vi-r’sin’p

My X

2

m .
sera: T = =7p' e-p-sing—

Esses dois elementos possuem energia cinética rekmnpois o pistdo possui movimento
puramente linear e o volante possue movimento pemgamrotativo. Ja a biela possui uma
composicao de movimento rotativo e linear. Recaloed forma geral de energia cinética para caso
bidimensional (ja antes deduzida):

Vo M+2Vo M -Wx Rgot+J-W

T
2

Tomando como referencial mével o ponto de contatdidla com o pistdo (que ndo é o
centro de massa da biela), a energia cinéticadlia fica:

Tb=%.mbx2+ n10-§<-5x[a-sin 9(])+a-cos@(T)]+%Jb92 :

-

) e 0=0-(—k) , e energia cinética da biela é:

-

Ccomo x= x-(
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Tb=%~mb X+ m- X-é'a~sin9+% J,60°

E assim a energia cinética total do sistema é:

T=T p+Tb+TV=%- m, >‘<2+%-mox2+mb- X-0-a-sing +% J b92+%

J P’
A energia potencial do sistema é nula, portantagrdngiana do sistema fica:
U=0-L=T-U=T .

Para simplificacdo serdo usados as seguintes ntahenas (A e B continuam sendo os
mesmos termos de antes, e serdo adicionados dms termos C e D, onde D é a derivada de C

em ¢ e Céotermod dividido por ¢ ):

. | -r®.singp-cosp
A=e-sinp— :
(1-r?sin’p )"
B= |-r%(sinp—cosp) |-r*sinp-cosp
=€e-Cosp + 2 -2 /2 2 - 2 \3/2 o
(1—r"sin“p) (1—-r"sin“p)
_r-cos
C= —> .5 , 6,
\/1—r -Sing
D=_ —I'sing r®.sin¢g-cosp
(1-r?sinfp)?  (1-r?sinfp)¥?

Utilizando as equacdes de Lagrange:
dfoL) oL_sp O
dt\ogp ~ " "lap

calculando as derivadas e reorganizando termosnpebe:

N —»

Z : ——(p [mpA- B+J,C-D+m,(A-B+B-C-ar-sing+A D-a-r-sincp+A-C-a-r-cos<p)]

My A+ 3, +J,-C*+my [ A’+2-A-C-ar sing)
Os esforgos externos do sistema 3 sdo 0s mesnsisteima 2, portanto:

N r T, .r2.sino-
D Fci ‘—T ——p-F, {esing— 1" S C957
op \/l—r -sin“@

E assim a equacéo diferencial do sistema fica:
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T : . .
Ty —o- F. A—@*[m A-B+J,-C-D+m(A-B+B-C-a-r-sing+A-D-ar-sing+A-C-a-r-cosp|
p=

my- A%+ 3+ J,-C2+my(A%+2- A C-ar-sing

onde a F,, é novamente separada em 4 termos:

F P

A= ( I:)min_ I:)atm)'-’T' D2

I:)atm) A= 4 :

ar, sucgac ( sucgdo

_ ( Pmax_ Patm)'n' D2

F ar, descarga= ( Pdescarga_ Patm) A= 4 ;
2-eD’m
Pmin'(T+Vmorto) P "IT'D2
F ar,compresséo= ( Pcompresséo_ Patm) A= 4-V - atm4 y €5
(e+l—x)+—=
D%m
I:)max'vmo ) Pa m' 7T D2
F ar,expanséo=( Pexpanséo_ I:)atm) A= 'n -—=
4 Vmono 4
(e+| — X)+T
D°m

O diagrama de blocos do sistema 3 esta mostratiguna 12:

Mathematical
- - — ’ Expression ’

FHIp FET 2

Mathematical
L Expression ’
A I

tdathematical
-

Expression |

-
ey [-
Mathematical L —
Expression Ll

-—
2 - -
Tem p
Phi J - - |
-1—# -
- - -
i) -
- {7 x
- E—
Far Xy

|

Mathematical -p——--——
e .

-

Fay

To
Figura 12: Diagrama de blocos do SCICOS para ocesist 3

Repare que agora, como as equacoes ficaram rel&inta mais compridas, foi usada a

45



funcdo de “Super-Block” do Scicos para implemeat@quacao diferencial do sistema. Assim, 0s
termos A, B, C e D, assim como as variaveis e ¢ , o torque do motor e a for¢ca do ar séo as
entradas, e a saida@ . Assim como antes, sdo medides ¢ 0 , X e F,

Foi usada a funcdo “Super-Block” por esta apresemtantagem na visualizacdo da
expressao matematica com relacdo a funcao “Matheah&uncion”, sendo assim possivel também
alterar partes da expressdo mais facilmente (s@mderéncia a “Mathematical Function” somente
nos casos de pequenas partes da expressdo quenddmam ser implementadas pela funcéo

“Product”. O diagrama de blocos do Super-Bloco é:

Fhip 1
Froduat

Fhi

=
i

Ju/]

?@é@ewa

YYYY !Fl

Q

tathematical
i | T —
Expression — -+
* FProduce
+
+
x

Froduet

>0 En—

Produer

4

Y

r

¥

M athematical

Expression

YYYYYY

Figura 13: Super Bloco do sistema 3

3.4. Sistema 4: pistdo-biela-manivela com pressdo d o ar, considerando gases
perfeitos e sistema adiabatico

O sistema 4 é bem semelhante ao sistema 3. Adesaram as caracteristicas do ar, fica
evidente que somente a forca externa provenienpeedsdo do ar que se alterara, e dessa forma as
equacGes diferenciais serdo as mesmas do sistamom3F ,, ligeiramente diferente.

Como ja foi explicado anteriormente, quando o sistdor considerado, ainda com gas

perfeito na camara de compressdo, mas agora enstema adiabatico e ndo mais istotérmico, a

46



equacdo que relaciona a pressdo da camara conumeralera: p,Vi=p,V5s=C , onde k é a

relacéo entre os calores especificos do ar a press&tanteC, e a volume constanté,

O valor de k varia conforme a temperatura do géis,vgue € 0 nosso caso (lembre-se que
agora possuimos um sistema adiabatico, e ndo s@i&rmico). Porém, a variacdo dentro das
temperaturas de operacdo séo relativamente pequrarasse ter uma idéia, o valor de k para o ar a
27C é de 1,400; ja para a temperatura de 227 &oo @e k € 1,387. Dessa forma, o sistema sera
simulado considerando k constante e para algurregaldiferentes de k, para assim poder-se
comparar tais valores (e saber o quanto aproximewli@mo sistema desvia de um real) e ndo
precisar se recorrer a métodos mais complicados.

Ja sabemos, da modelagem do sistema 2, que o vdl#@mara sera:

2
_(e+l—x)-D Ty

V=V +V morto™— 4 morto

cilindro

As pressdes de descarga e sucgao continuaracagyaateriores:

Psucc;51|= I:)mirw ;

P P

descargi— ' ma»

Porém, as pressbes de compressao e de expansio terino do volume elevado a k, e
ficardo portanto:

k
2-eD’m
p 282 T vy
5 _ Pmin'Vz _ min ( 4 morto)
compressao Vk (e+| B x)- Dz-n- K
4 +Vm0rt0
_ I:)maxv; — I:)max'vlr(norto

expansao Vv k

K
(e+1—x)-D*m
4 +Vm0rt0

Logo, a forca do ar, para as quatro etapas dikesedd um ciclo do compressor, sera:

A= ( I:)min_ I:)atm)'-’T' D2

F P atm) A= 2 ;

P

ar, sucgacs ( sucgdo
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( I:)max_ Patm)'Tr' D2

F ar, descarga= ( Pdescarga_ Patm) ‘A= 4 ;
k
2-eD*m
I:)min'( 4 +Vmorto) T Dz
Far,compresséo=( Pcompresséo_ Patm)'A= 2 k I:)atm 4 €
(e+l—x)-D%m
4 +V morto
Prac Vs - D?
Far,expanséF( Pexpanséo_ I:)atm)' A= = 5 e K I:)atm T
(e+l—x)-D%mr
4 \ morto

3.5. Sistema 5: pistdo-biela-manivela, com torque e  xterno linear e mancal nao rigido

Nesta modelagem, o mancal onde o volante estadapoio serd mais considerado rigido.
Agora seguira o modelo de mancal nao rigido cuntereormente abordado. Desta forma, 0 novo

sistema seguira o diagrama da figura (14):

Figura 14: Sistema 5

Nesse novo sistema, temos agora duas variaveissagna sdo X, e Y, . Dessa forma,
como pode ser observado da figura, o centro dolado mais estara posicionado na origem, o
que gerard a excentricidade com relagdo ao seuammdfa incluida também a distancia b, do
centro de gravidade do volante (que fica na reti@ encentro geométrico do volante e o ponto de

contato com a biela) até o centro geométrico dantel Repare que o angulp foi invertido por
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conveniéncia, para que se torne a mesma velocidade angular queda teoria de mancais
curtos e facilitar as operacdes algébricas. Asa®rngrovenientes da excentricidade do mancal

exercidas no volantes estdo esquematizadas na {itpix:

Figura 15: Forgas do mancal no volante

E como ja visto antes, as forcds, e F, serdo:

F iR (w_z.y).(rr-e-a<e>-cos<y>—4-e2-sin<y>) e
o< 4-a(e)*

4-6-a(E)'COS()/)—TF'b(G)'Sin(Y)] .
2-a(e)® '

F LwRL -(w_z,y).(4.62.c08(y);;.;f(e)-sin(Y))-+'e.

C
com a(e)=(1-¢)°° e blc)=(1+2-¢) e w=@

m-b(e)-cos(y)+4-c-a(e)-sin(y)
2-a(e) ’

Serdo descobertas agora as novas relacoes deovaringé as cordenada® e Xp=Xg

em funcéo das coordenadas , X, e Y, .Iniciando com 0 , do sistema tem-se a relacéo:

esing+y,

e-sinp+y,=l-sin6d—sinf= |

E, portanto:

e-sinp+y, esinp+y, ?

I I
(somente é verdade porgug nunca estara no 2° ou 3° quadrante, portarged serd sempre

1—(sin9)2=1—( =(cos€)2—>cos(9=\/1—( :

positivo).

Ja X, e Xg serao:

Xp= Xy =X,— € COSp+1-c0s0= x,—e-cosp -+ 1°—(e-sinp+Y,
A energia cinética da biela e do pistao serdo sgaquelas do sistema 3 e 4, e portanto:
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, 2
mp' Xp

2

Ja a energia cinética do volante ndo sera mais sanaepois agora ele possui energia

Tb=%'mb X2+, xb-9~a~sin9+%J 0" e T =

cinética rotacional e translacional. Recorrendam@niéila geral de enérgia cinética para corpos
rigidos em duas dimensoes:

Vo M+2Vo M WX Rgot+J-W
a 2

observa-se que a energia cinética do volante sesmit

T

1 . 1.3 besin (T N+23.¢
TV=E.n1V.(xV2+yV2)+m-(xV+ ¥,):@X[b-sing( |)—b-cosp (i )]+§Jv‘P2 ,

portanto:

TF%' m,( X"+ y,")+m, (X, ¢-b-sing + yv-cb-b-coscp)Jr% 3,07 .

Usando Lagrange, obtém-se as equacdes diferedoigistema 5:

A
(D3+Fy)'Kl— D,-T A A
3 1 1
Al '(Cz'K_Cl)_(D2+FX)'K+D1+T
Cg'——Cl 2 2
. A3
p= - '
A
B3'_1_Bl
A A A
A3 Cz-f—cl) BZ-EHB1
C3.El_cl 2
(Dy+F,) =—D,—T 5
2 -(Cz- L—C,|—(Dy+F,)==+D,+T
C E_C BZ BZ
3 83 1
X,=t _ , €
B
Ayr——A
°By, B, .
’ Cz Cl _Az'_+A1
Bl BZ BZ
CS‘E_C]'
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—(Dy+ FX)-%+ D,+T

B A B
A]_ 2A2 1

y,="

comtermos A, a Dj :

e-sin(e)+ M..-a-€-Cos
Al= rm.b.5|n((p)+(m8+ mp)'E3+( (:p) yv)' B E5 (p ’

A=m,+mg+m, ;

m.-a (e-singp+
A3=(mB+mP).E4_|_ E ( Tp yv) :
5

. e cosp-(e-sing +
B,=J +JB-(—e COS(p) +(mg+m,) ES-[esincp— sp-( = P+Y,) +
5

E,-ecosp (esing+y,) L ecosp (esinp+y,)
E. I E. I

e-cosp-(e-sing+y,)
E5

mB'

senp —

e-cosp-(esinp+y,)

B,=m,b-sinp+(m,+my): =
5

e-singp —

m,-a-e-cosp [e-sinp+y,
Es |

J,-e-cosp
2 +(mB+mP)'E4'
5

e-cosp-(e-sinp+y,)

B,=—m,b-cosp+
E5

e-singp —

E,ecosp (esing+y,)
E. |

e-cosp-(esingp+y,)
E5

_i_(e-sin<p+ Yy
E. I

+(e-sinp—

b

C,=—m,-b-cosp+

Es Es Es I =

J, €e-cosp (mB+mp)-E3.(e.sin<p+yV)+moa[é(e.sin<p+yv) e'COS(p'(e'Si”(PJFyv)Zl .
5

(e'sinp+y,) mga (esinp+y,)

C,=—(mg+m,)- + . .
2 ( B P) E5 E5 | ’
Co=m,—(my+m,) (esinp+y,) o Jp . IEs (e-sinp+y,) (esing+y,)’| |
3 B P E5 4 E52 B E5 | E52'| )
Jg-e-co EsEq(esing+ EsE,(e@-cosp+y
F—[BTSS(p-Eﬁ(mwmp)-E3-E7+mB-a- 7 Es | @ yV)+ 3 Bal (pl SP+Y.) 1

j— mB. a.

e-cosp Er(esinp+y,) L eCosp. E, (e @-cosp+y,) E;E,ecosp ] _
E5 I E5 I I ’
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e-singp+ e (pCcosp+Yy
D,=— Wk,~(p2-b-cos<p+(m3+mp)'E7+mb~a- Ee(l—(py" +E2.(w e:
e-sinp+y, e@cosp+y,| E, (esinp+y,)
D,=-mg-a|E, E@'(l— +E4.E2.(I— EYI—
5
E, (eepcosp+y E,-E J.-E
.—Mga El'( i IS(P ) ll 2 |- m,-@*b-sing+— 6Jr(mBerF,)'E7-E4] ,
5 5

eostermosdeE; a E, :

(esinp+y,)(e@-cocp+y,)
(I*—(esingp+y,)*)*

E,=X,tep-sing—

(e-p-cosp+y,)

E.=
2 (IP—(e-sinp+y,)?)’®

(e-sinp+y,)-€-cosp _
(I’~(e-sinp+y, })*°

E,=e'singp—

—(e-sinp+y,)

E,=— : 2
(I"=(e-sinp+y,)7)

05

Es=(1*—(e-sinp+y,)*)** ;

D +vV 2 (a.qj +
—e~<‘p2-sin<p~(l2—(e~sin<p+yv)2)°'5+(e % CZOS(P yv) (e S”;(ops Y
(I°=(e-sinp+y,))” , €

I’—(e-sinp+y,)

E,=

(e-@-cosp+y,)*(esinp+y,)?

12—
(P—(esing+y, P

(e-sinp+y,))"+

|(e--cosp+ Y, )~ e p>sing-(esing+y,) |
E,=e-p°-cosp—

I°~(e-sinp+y,)

3.6. Sistema 6: pistao-biela-manivela, com torque e  xterno linear e 3 mancais néo

rigidos

O sistema 6, e 0s sistemas posteriores, mais croyleserdo simulados no software
ADAMS, da MSC, que permite uma flexibilidade maiwa alteracdo de todo o sistema. Sera
realizada uma comparagdo entre tal sistema e enmsb, para a validacdo da utilizacdo do

software. Tal sistema, pode ser observado na Figura
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Figura 16: Sistema 6

Percebe-se que nesse sistema foram adicionadaariaseis X, , X; , Y, e Y; |
gue exprimem a excentricidade entre os pontos aatwoda biela com o volante, e da biela com o
pistdo. Os indices 1, 2 e 3, representam o0s mahichmdindmicos entre 0 mancal do sistema e o
volante, entre o volante e a biela, e entre a lielgistdo, respectivamente.

N&o € necessaria a deducdo das equacdes difesedoiasistema para a simulacdo do
sistema utilizando o software ADAMS. O arquivo dodalo construido estd anexo em midia
digital que se encontra junto a este trabalho.

3.7. Sistema 7: pistdo-biela-manivela com pressdo d o ar, considerando gases
perfeitos e sistema adiabatico, com torque externo proveniente de um motor

elétrico de inducdo monofasico e 3 mancais ndo rigi  dos

No sistema 7 a pressdo na camara de compressa@\astar presente e agora ao inves de o
acionamento ser feito por um motor teorico, € redld por um motor real, elétrico, de inducao,
monofasico. O motor escolhido foi o Steel Motor NEB6 de 0,18kW (categoria N) da Weg, por
possuir poténcia similar aquela que foi utilizades sistemas anteriores. Os pontos tabelados de

torque para tal motor sao:
— Torque inicial: 1,5Nm;

— Torque maximo: 1,75Nm;
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— Torque nominal: 0,5Nm (a rotacao de 3480 rpm).

A curva do torque pela rotacdo de motores da catefpda Weg pode ser vista na Figura
17:

300

Categoria D

230

200

150

100

50

Conjugado em percentagem do conjugado de plena carga

10 20 30 40 50 60 70 80 90 100 %_
Velocidade

Figura 17: Curvas de Torque x Rotacdo para as difiées categorias de
motores da Weg

Fonte: Catalogo de Motores Elétricos - Baixa Ten@dercado Brasil)
da Weg

A partir da curva de torque por rotacdo do motateealguns pontos tabelados é possivel
construir, usando a regra de trés, uma curva apemora para o motor especifico a ser utilizado.

Tal curva pode ser encontrada na Figura 18:
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Torque x Rotacdo

1,8

1,6

N \

\  CLIrva utilizada

s Polindmio de 6o grau
utilizado

Torque (Nm)

[} L]
] [
—p—

=
.

0,2

a T T T 1

0 100 200 300 4040
Rotacdo (rad/s)

Figura 18: Torque x Rotacao do Steel Motor NEMAG&SkW

No grafico ja se encontra também o polinbmio dgré utilizado para a aproximacao da

curva. Tal polinbmio é:

T=—1,7210"¢%+1,3510 " ¢p°—3,8210 °- 9" +3,92.10 - ¢p°+2,4710 > p°—6,14-10 > p+1,5C

3.8. Sistema 8. sistema 7 mais atrito viscoso prove niente dos mancais

hidrodinamicos

O sistema 8 é exatamente igual ao sistema 7, pémr&icionada a formula de atrito viscoso
para o mancal do sistema, assim como para as aluessjuntas, explicitada no capitulo Fehler:

Referenz nicht gefunden.
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4. Simulagoes

Neste capitulo seréo realizadas algumas simulay@éminares variando os parametros do
compressor para se tomar conhecimento de algumasculwvyas caracteristicas desses. Os
parametros serdo também variados para se obsanfarémcia de cada um deles nas curvas.

4.1. Simulacdes do Sistema 1

Utilizando os parametros:

J,=0,005kg nT;T ,=2N m;w=188,5ad/s; M »=1kg;e=0,025m;I=0,1m ,
obtiveram-se os seguintes graficos:

¢ (rad)]
00 3
500 3
400
300 3
2003
100
ey 0s 10 15 20 25 20 25 40 ¢ [S]
${radis) T
200
150
100
&0
Yoo 05 10 15 20 25 20 55 40 ¢ (5]
a(radis) T
60—
a0
20
0
20
403
60 R
=0an 05 10 15 20 25 20 25 40 t [S]

Figura 19: Simulagcéo do Sistema 1

Pelos graficos, observa-se que que o volante acatérchegar a velocidade de operacdo
apos aproximadamente dois segundos. Era o espgraidoa partir desse momento o torque do
motor fica na média igual a zero. Repare que oscila ao redor da velocidade de operacao. Isso
ocorre porque, como somente 0 pistdo e o volargsyaon massa, para 0 sistema manter a energia
cinética total constante (pois, como ja dito, a@ipaesse instante o torque do motor é na média
igual a zero), quando o pistdo esta com velocidadtéma, o volante estara com velocidade

maxima, e vice versa.
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J4& velocidade de oscilagdo da biela e do pistd@ndeser proporcionais a velocidade
rotacional do volante, portanto percebe-se queitagéo de 0 aumenta até chegar na operacao.

Variando o momento de inércia do pistao, obtém-se:

L

b(radis) ]

200

150 P
1003 T
50 —
o. 0s 10 15 20 28 20 25 40 4 =5
a{radis)] (s)
£0
40
20
03—/
.20
.40
.60
20

u]

L]

o 05 1.0 15 =0 25 50 3.5 4.0 t [5}

Figura 20: Sistema 1, com Jv = 0,01 kg m?
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Figura 21: Sistema 1, com Jv = 0,001 Kg m?

Percebem-se duas influéncias do momento de inéasiaurvas. A primeira € o0 tempo para
0 sistema atingir a velocidade de operacao: quaedaumenta 0 momento de inércia do pistéo,
aumenta-se também o periodo até se atingir a deldeide operacao e vice-versa.

J& a segunda é com relacdo a oscilagdapdeao redor dew : quanto menor a massa,
maior, e vice-versa. Isso se da justamente porqualogidade de rotacdo do volante varia para

compensar a variacdo da energia cinética do piatsim, se o momento de inércia for maior, tera
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gue variar menos para compensar uma mesma guantidaghergia cinética, e vice versa.

Variando agora a massa do pistdo, observa-se graedeclhancas a variagdo do momento

de inércia do volante:

d{radis) 1
200
150
100
&0
“oo 05 1.0 1.5 20 25 20 35 40 ¢ {S]
a(radis) I
60
<0
20
0
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40
60
a0 y T T T y T T ' }
an 0s 1.0 15 20 25 an 38 40 ¢ (g)
Figura 22: Sistema 1, com Mp =5 kg
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Percebe-se que quanto maior a massa do pistdo enaatacado deg

Figura 23: Sistema 1, com Mp = 0,1 kg

ao redor dew

Ou seja, quanto maior a massa do pistdo, maioe@iana ser compensada pelo volante e maior a

oscilacéo da sua velocidade de rotacao e vice.versa

Pelos graficos ndo fica aparente, mas o tempo quee&tema demora para chegar na

velocidade de operacdo é também dependente da dmgsstdo. Isso pode ser claramente notado

pela equacao diferencial do Sistema 1, onde a ndasgistdo é encontrada no denominador.
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Dos graficos fica evidente que a alteracédo de Mprteior influéncia na oscilacédo d¢ e
pouca influéncia sobre a aceleracdo total do sistemmquanto que a alteracdo de tem
influéncias mais equilibradas. Isso se da porgpestdo a cada ciclo é acelerado e desacelerado de
zero até a velocidade maxima do ciclo, enquantooquaante so acelera e desacelera o suficiente
para compensar a alteracéo de energia cinéticestimpnunca chegando a zero (pois se em algum
momento o volante poussir velocidade de rotacaal igwero o sistema todo estard em repouso,
como pode ser observado nas equacdes de 0 ).

Como o volante possui uma menor variacdo percedtuaklocidade de rotacdo e o pistdo
uma variacdo percentual da velocidade linear ma@ara ambos causarem o mesmo efeito na
aceleracéo total do sistema o pistdo devera terali@@cao na massa que cause uma alteracdo na
oscilagdo de@ grande, enquanto que o volante devera ter umaagdterno seu momento de
inércia que cause alteragcbes na oscilacdo@dendo tdo grandes. Efeitos similares serao

observados quando for adicionada a massa da beBistema 3.

Variando agora o Ultimo parametro possivel do iatd, que é a relacdo entfee €

obtém-se:
d(radis) 1
200
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Figura 24: Sistema 1, com | = 0,15m; e e =0,02m
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Figura 25: Sistema 1, com | = 0,075m; e e = 0,0275m

Percebe-se que a oscilaco total @lee a oscilagdo dep em torno dew assim como o
tempo de estabilizacdo do sistema sdo afetadas.olssre porque o caminho percorrido pelo
pistdo varia (somente por causa €e), portanto se esse for maior, a velocidade dépitdra que
ser mais elevada para percorrer 0 mesmo caminhmeasmo tempo (aumentando a oscilagdo de

0 ).

Maior velocidade do pistdo significa maior energi@ética média e assim uma quantidade
maior de energia externa (torque do motor) a sm@tada, e portanto um tempo maior de
estabilizacdo. Significa também maior variacdo mkrgia cinética do pistdo a ser compensada, e,
portanto, uma maior variacdo dep em torno dew , O oposto se observa quando se diminui

€

O efeito da variacdo dé é perceptivel somente e , pois com a variacdo do
comprimento da biela, altera-se também a variagfal tle 0 (ou seja, se a biela for mais

comprima 0 variara menos em uma revolucdo do volante).

4.2. Simulag¢des do Sistema 2

Com os parametros antes utilizados no sistemai%; ma

D=0,004m ; P,,.,=180000N /m*; P,.,, =100 000N /m’; P ;,;=10000N /m’;V ;,,,c=6,2810 °m’

obtém-se:
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Figura 26: Simulagcéo do Sistema 2

A principio, a diferenca que se pode observar erdrsistema 2 com relagéo ao sistema 1, é
que ¢ nao estabiliza mais em volta d@ , e sim abaixo. Isso ocorre porque agora existem
forcas resistivas ao movimento, e o sistema estabjuando a média dessas for¢cas no tempo
compensar o torque médio no tempo.

Outro efeito importante € a dificuldade em que stesna tem para completar o primeiro
ciclo. Isso acontece, porque logo no inicio o mptecisar fornecer a energia tanto para comprimir
0 ar da camara, quanto para acelerar os comporgmtaistema. Tal efeito se ameniza a partir do
segundo ciclo, justamente porque 0s componentgmgauem entdo alguma velocidade. Dessa
forma, no regime de operacéo o motor sO precisebar energia para comprimir o ar.

No gréfico da for¢ca do ar da para reparar claragnestestagios de compressao, descarga,
expansao e sucgao.

Podem-se observar mais claramente os efeitos da @& resisténcia do ar com os graficos
das figuras 27 e 28:

61



d{radis) 1
200

15077

10077

507

a

o0 0% 10 16 20 25 20 26

g (radis) T
G0

407

20

o

=20

-0

60—

=000 0.5 10 15 20, 25 30 35 0 ¢ (5}

Far (N) -

150

I

o t Es}

I

1003

0.0 0.5 10 15 2.0 2.5 30 35 40 ¢ I:'s]

Figura 27: Sistema 2, com Pmax = 240 000 N/m?
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Figura 28: Sistema 2, com Pmax = 190 000 N/mz?

Percebe-se que quandd,., foi aumentada a velocidade de regime foi diminwgdas
efeitos sobre o primeiro ciclo amplificados. Issmme porque agora a camara comprime o ar a
pressbes mais altas e consequentemente maior arisistente do ar. O oposto ocorre quando

P, € diminuida.
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Os efeitos da mudanca do diametro do pistdo saitasas como pode ser observado nas
figuras 29 e 30. Isso se da pois 0 pistdo estdadiente relacionado com a quantidade de ar

comprimida, e consequentemente com a forca residt\ar.
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Figura 29: Sistema 2, com D = 0,045m
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Figura 30: Sistema 2, com D = 0,02m
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HA uma diferenca, porém: quando se altétg, a pressdo chegard a valores de pico
diferentes e ficara portanto somente uma partesaiim a pressdes diferentes, e consequentemente
forcas do ar diferentes; ja a alteracdo no dianméimaltera a pressao, altera somente a arealque ta

presséo atua, e consequentemente a forca reslstaa em todos os instantes.

4.3. Simulagdes do Sistema 3

No sistema 3, foram utilizados todos os paramettossistema 2, mais 0s seguintes
parametros:
M,=2kg ;J,=0,005kg nf;a=0,05m

Os graficos obtidos sdo dados na figura 31.:
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-1

-303

50

0.0 0.5 10 15 2.0 25 20 35 40 t [5]

Figura 31: Simulagcéo do Sistema 3

Do gréfico fica claro que a oscilacdo da velociddderolante aumentou. Os efeitos sobre a
oscilagdo de¢ sdo agora, porém, ndo tdo claros. Percebe-se cquenstantes em que as
velocidades de translacdo do pistdo e da bieleeA@das, a velocidade de rotacdo da biela é
pequena e vice-versa. Dessa forma, a rotacdo tatbrele a compensar as oscilagdes de energia
cinética das velocidades translacionais da bidia gstéo.

Aumentando a massa da biela, como visto na fig@rarépare que a oscilacao de
aumenta, mas ja aumentando o momento de inérddella a oscilacdo dep cai, inicialmente

(figura 33). Com um novo aumento do momento decia&la biela, a oscilagcdo de volta a
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crescer (figura 34):

d(radis) 1

160

120
80
40

0
[}

o 0.5 10 15 =0 25 20 55 40 ¢ (5]

d(radis) -t

B s ot
& oo &
IIIIIIII;‘IIIIIIIII

0.0 0.5 10 15 =0 25 30 3.5 40 ¢ (5}

Figura 32: Sistema 3, com Mb = 10 kg
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Figura 33: Sistema 3, com Jb = 0,03 kg m?
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Figura 34: Sistema 3, com Jb = 0,1 kg m?

A razdo disso € simples: inicialmente, na figura @1, oscilava para compensar as
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velocidades translacionais da biela e do pistdon Ga@umento da massa da biela, na figura 32, a
oscilacdo de¢p aumentaram para compensar o aumento de enerdantsq@ela adicdo de massa
na biela. Ja o primeiro aumento do momento de imé&l& biela, na figura 33, ajuda o volante a
compensar as energias cinéticas das velocidadeslateonais da biela e do pistdo, e assim a
oscilagdo de@ j& ndo é tdo grande. E por fim, na figura 34, o exwm de inércia da biela ja € tao
grande, gue ndo s6 compensa sozinho as velocittadskcionais da biela e do pistdo, como sobra
energia, que precisa agora ser compensada pelueola

Como ja foi explicado na simulacdo do Sistem lymento do momento de inércia e massa
da biela causam também um retardamento na es#giditizdo sistema. Por motivos analogos a

influéncia de J, M, é menos forte sobre o tempo de estabilizacdo degue a oscilacdo de
P

4.4. Simulag¢des do Sistema 4

Para a simulagdo do sistema 4 foram usados o0s rmepar@ametros do sistema 4 e

adicionalmente o parametr&=1,4 . Os gréaficos resultantes sdo mostrados na figbira 3

¢ (rad)]
B00 3
5003
400 3
2003
200
100
Yoo 0.5 10 1.5 2.0 2.5 2.0 2.5 4.0 tfs}
¢(radis) I
160 3
1207
80
40
Yoo 05 10 15 20 25 20 55 40 ¢ {5]
o (radis) 1
30
10
-0 —;\‘
-303
60— T T T T T y T ¥
0.0 0.5 10 1.5 2.0 2.5 2.0 2.5 40 ¢ (g)

Figura 35: Simulag&o do sistema 4 comk=1,4

A principio talvez o leitor ndo consiga indentificg&enhuma variacdo para a simulagéo do
sistema 3, pelo fato de a for¢a externa do argeterado apenas ligeiramente. Porém, as figuras
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36 e 37, uma simulagéo do sistema 3 e do sisteam d4m intervalo menor (apenas 1 segundo),
deixa mais claro as diferengas existentes.
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Figura 36: Simulac&o de 1 segundo do sistema 3 @®parametros antes fornecidos)
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Figura 37: Simulacéo de 1 segundo do sistema 4 @®parametros antes fornecidos)

Percebe-se das duas figuras que, no periodo déas#ny enquanto o sistema 3 percorreu
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11 ciclos completos e ja comegou 0 12° ciclo, tesia 4 esta ainda no final do 11° ciclo. Isso é
evidente, posto que o trabalho necessario paraaeaim ciclo do compressor isotérmico é menor
que o trabalho necessario para realizar um ciclondeompressor adiabatico.

4.5. Simulag¢des do Sistema 5

A simulacao inicial do sistema 5 foi feito com egsintes parametros:
J,=0,0025g mZ;T0=2N m;w=188,5ad/s; M ,=1kg;e=0,025m;|=0,1m;a=0.05m;M ,=1 kg;
J,=0,005%g nf;M v=1kg;b=0,0125m;=001Pas; R=0.0635n L=0.0381m c=0.00009m . Os

resultados obtidos podem ser observados nas fi§8re89, 40 e 41.

Angulo PHI x Tempo
140

1207
100
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20

0 T T T T T T T T T T T T T T T T 1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figura 38: Angulo do voI;nte com relagdo ao tempo
Como era esperado, a curva do angulo e da velaxigagular do volante do pistdo reagiu
de maneira similar as simulacdes anteriores, peiscantricidade do centro de rotacdo do volante
pouco efeito produz sobre a energia do resto dens#s(pistdo, biela e volante ou manivel). Porém,
agora podem ser observados pelas figuras 40 e ekcemtricidade e a Orbita apresentada pelo

centro de rotacédo do volante.
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Velocidade Angular PHIponto x Tempo
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Figura 39: Velocidade angular do volante com relagi® tempo

Excentricidade: Epsolon
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Figura 40: Excentricidade do centro de rotacéo vi&a

A excentricidade pela qual o volante passa comet@,go0is inicialmente ele se encontra
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na origem. Com o decorrer da simulacdo, ele coneec®r empurrado para fora, tanto pelo
desbalanceamento da manivela (por ndo possuirtmadsm massa no centro de rotacao), como pela
forca que deve aplicar para a biela e o pistdocex@m seus movimentos. As forcas do mancal
agem entdo no volante de modo a reposicionar eccdatrotacdo do volante a origem. Depois de
algum tempo as forcas do mancal e as forcas dealdeskamento do volante levam a
excentricidade a um valor praticamente estavel, pequenas oscilacdes. Nesse ponto, a Orbita do
centro de rotacdo do volante fica proxima a umeuaileréncia, que pode ser observada na figura

41 (onde a linha da érbita fica mais escura).

Orhita da excentricidade
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Figura 41: Orbita da posicéo do centro de rotacamwblante

|
1.0e-004

4.6. Simulacdes do Sistema 6

Para a simulacéo do sistema 6 foram utilizadoggsistes parametros:
J,=0,002%g nf; J,=0,005kg nf;M ;=1kg;M,=1kg;M =1kg;e=0,025m;I=0,1m;a=0,05m;
b=0,0125m;T =2N m;w=188,5ad/s;u=001Pas; R1I=R2=R3=0.0635m L1=L2=13=0.0381m
¢c1=c2=c3=0.00009m PMAX=180.000Pa..

Esses parametros sdo os mesmos do sistema 5, adigda de parametros dos mancais

hidrodinéicos 2 e 3, para direta comparacéo corsissma. As figuras 42, 43, 44, 45, 46, 47 e 48
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mostram o resultado da simulag&o do sistema 6.

AngularVelocity (deg/sec)

No Units

15000.0

10000.0 W
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Figura 42: Velocidade Angular do volante em relag@otempo

Percebe-se que o volante comporta-se exatamertiepigrna o sistema 5 e para o sistema 6.
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Figura 43: Excentricidade do Contato Mancal/\Volante

A excentricidade do contato mancal/volante se cotagigeiramente diferente no inicio da

simulacédo, convergindo para os mesmos valores gimeepermanente. Tais diferencas se devem

aos métodos numéricos usados por cada software.
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Figura 44: Excentricidade do Contato Volante/Biela

7 bY

A excentricidade do contato volante/biela € muitmilar & excentricidade do contato
mancal/volante. Isso pode ser explicado, porquataec@io em ambos € muito parecida, e perto de
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Figura 45: Excentricidade do Contato Biela/Pistao

Ja a excentricidade do contato biela/pistdo masina grande amplitude inclusive no
regime permanente. No gréfico de Orbita da pasmgergar melhor os efeitos ai presentes.
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— Orbita da Excentricidade 1
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Figura 46: Orbita da Excentricidade do Contato Mativolante

Novamente percebe-se os efeitos similares no regemaanente, e as pequenas diferengas
no inicio da operacao.
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Figura 47: Orbita da Excentricidade do Contato Vale/Biela

A Orbita da excentricidade do contato volante/bé&l@ambém muito parecida com a 6érbita
do da excentricidade do contato mancal/volante.
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—Orbita da Excentricidade 3
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Figura 48: Orbita da Excentricidade do Contato Bittist&o

Na Figura 48 da para se perceber melhor o queeoarmancal hidrodindmico 3. Existe
uma grande amplitude em x, justamente pelo fatpidtiio estar fixado na dire¢cédo y, e 0 seu
deslocamento ser totalmente em x. A pequena o&oilag y se deve ao angulo em que a biela esta

empurrando o pistdo, que sera quase o tempo tadpanélelo ao eixo Xx.

4.7. Simulacdes do Sistema 7

Para a simulacéo do sistema 7 foram utilizadoggsistes parametros:
J,=0,002%g nf; J,=0,005g nt;M ,=1kg;M ,=1kg;M,=1kg;e=0,025m;|=0,1m;a=0,05m;
b=0,0125m;w=188,5rad/s; u=001Pas; R1=R2=R3=0.0635m L1=L2=L3=0.0381m
PMAX=180.000Pa;cl=c2=c¢3=0.00009m ,
e torque:
T=-1,7210 " ¢°+1,3510 " p°-3,821C " ¢"+3,94.10 " ¢+ 12,4710 p~6,141C > p+1,5C .

O resultado da substituicio de um motor tedricoymorreal s6 tem efeitos relevantes no
inicio da operacédo, porque perto do ponto de ofierag curva do motor se parece com uma reta
(ou seja, com o0 motor que estava sendo usado@mente). O efeito em@ pode ser observado
na Figura 49. Repare que no regime permanente @artemento do volante é muito similar,

porém a curva apresentada até chegar no regimepente € bastante diferente:
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Angular Velocity (deg/sec)

25000.0

20000.0 1

15000.0

10000.0

5000.0

0.0

0.0

0.5 1.0 1.5 20
Time (sec)

Figura 49: Velocidade angular do volante em relag@otempo

As excentricidades e Orbitas dos mancais 1 e Zas@ibém bastante parecidas no regime

permanente, com algumas diferencas no inicio deag@e, observadas nas figuras 50, 51, 53 e 52:

No Units

—EP51

0.9 1
0.8 1
0.7
0.6
0.5
0.4 1
0.3
0.2 1

0.1

0.0
0.0

05 1.0 15 20
Time (sec)

Figura 50: Excentricidade do Contato Mancal/Volante
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No Units

Length (meter)

—EPS52

1.0
0.9
0.8 A
0.7
0.6
0.5
0.4
0.3 A
0.2+
0.1
0.0

0.0 05 1.0 1.5 20

Time (sec)
Figura 51: Excentricidade do Contato Volante/Biela
—Orbita da Excentricidade 1
1.0E-004
5.0E-005
0.0
-5.0E-005
-1.0E-004 i T T
-1.0E-004 -5 0E-005 00 5 0E-005 1.0E-004

Length (meter)

Figura 52: Orbita da Excentricidade do Contato MatiManivela
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—Orbita da Excentricidade 2

1.0E-004

5.0E-005 4

0.0

Length (meter)

-5.0E-005

-1.0E-004
-1.0E-004 -5.0E-005 0.0 5.0E-005 1.0E-004

Length (meter)

Figura 53: Orbita da Excentricidade do Contato Meglia/Biela

J& o mancal 3 apresenta maiores diferencas, aaivorca de compressao do ar, que volta

a estar presente no sistema, podendo ser obsenaslfiguras :

—EPS3

0.9 1
0.8 1
0.7 1
0.6

0.5

No Units

0.4 1

0.3

0.2 1

0.1

0.0 T T T
00 05 10 15 20

Time (sec)

Figura 54: Excentricidade do Contato Biela/Pistao
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—Orbita da Excentricidade 3

4.0E-005

3.5E-005

3.0E-005

2.5E-005

2.0E-005

1.5E-005

Length (meter)

1.0E-005

5.0E-006

0.0

-5.0E-006
-1.0E-005 0.0 1.0E-005 2.0E-005 3.0E-005 4.0E-005 5.0E-005 6.0E-005 7.0E-005 8.0E-005

Length (meter)

Figura 55: Orbita da Excentricidade do Contato Bittist&o

4.8. Simulacgdes do Sistema 8
Para a simulagéo do sistema 8 foram utilizadoggsistes parametros:

J,=0,008kg nf;J,=0,000%g nt;M ,=0,1kg; M,=0,1kg ;M,=0,7 kg ;€=0,025m;1=0,1m;
a=0,05m;b=0,0125m;x=0,1Pa's; R1I=R2= R3=0.005m; L1=L2=13=0.01m;
PMAX=300.000Pa ;c1=c2=c3=0.000045m ,
e torque:
T=5(-1,7210 " ¢°®+1,3510 " »°-3,8310 > »*+3,9410 " p°+2,4710 °-¢°—6,1410 > p+1,50

O resultado observado foi:

—PHIp
25000.0

20000.0
0

g J
o
[o)]

© 150000
oy

g J
o
@

Z  10000.0
@
=

= .
£

5000.0

0.0 - - - -
0.0 05 1.0 15 20 25
Time (sec)

Figura 56: Velocidade angular do volante
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Angle [deg)

No Units

50000.0

40000.0 1

30000.0 1

20000.0 1

10000.0

0.0
0.0

0.5 1.0 1.5 20
Time (sec)

Figura 57: Angulo de rotacdo do volante

—EP31

0.5 1.0 1.5 2.0
Time (sec)

Figura 58: Excentricidade do contato Mancal/\Volante
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No Units

No Units

—EPS2

2
]
]
———

0.0 0.5 1.0 1.5 2.0
Time (sec)

Figura 59: Excentricidade do contato Volante/Biela
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0.7
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0.5
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0.3
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0.0 0.5 1.0 1.5 2.0
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Figura 60: Excentricidade do contato Biela/Pistao
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—Potencia Fornecida
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Figura 65: Poténcia Fornecida pelo Motor Elétrico

—Energia Fornecida
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1500.0 4
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Figura 66: Energia Fornecida pelo Motor Elétrico

25

Os graficos mostram que a estabilizacdo do atigoogo em cada contato é altamente

dependente da estabilizacdo da excentricidade i@atoo Além disso, para tal sistema, de atrito

viscoso predominantemente baixo, a velocidade angld volante ndo se alterou drasticamente

(apresentando uma ligeira queda apds 0 momentpareeia ter se estabilizado).

Quando simulou-se exatamente 0 mesmo sistema, BdmRz=Rz=0.05n , o resultado

obtido foi:
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Angular Velocity (deg/sec)
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Figura 67: Velocidade Angular do Volante
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Figura 68: Angulo de rotacdo do volante
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No Units

No Units

—EPS1

0.25 1
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Figura 69: Ecentricidade do contato Mancal/\Volante
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Figura 70: Excentricidade do contato Volante/Biela
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No Units

Torque(N"m)
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0.9

0.8

0.7 1

0.6 1

0.5

0.4

0.3

0.2 1

0.1

0.0
0.0

0.5 1.0 1.5 2.0
Time (sec)

Figura 71: Excentricidade do contato Biela/Pistao
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Figura 72: Atrito viscoso do contato Mancal/Volante
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Torque(N"m)
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Figura 73: Atrito viscoso do contato Volante/Biela

—TorqueViscoso3d

0.5

At

i

0.5 1.0 1.5 20 25
Time (sec)

Figura 74: Atrito viscoso do contato Biela/Pistao
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—Torque Fornecido
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Figura 75: Torque Fornecido pelo Motor Elétrico
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Figura 76: Poténcia Fornecida pelo Motor Elétrico

88



—Energia Fornecida

1500.0
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Figura 77: Energia Fornecida pelo Motor Elétrico

Essa simulacdo, em oposicdo a anterior, mostrouaguexcentricidades se estabilizaram
mais rapidamente, apresentando valores mais remuZiltorque viscoso, em compensacao, devido
ao maior raio do mancal e juntas hidrodinamicasfoito maior, 0 que ocasionou um sistema
lento, com torque mais alto fonecido pelo mototriglé (Que ndo conseguiu chegar e passar do

ponto de torque maximo).
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5. Resultados

Para o sistema com parametros
J,=0,008kg nf;J,=0,000%g nf;M ,=0,1kg;M,=0,1kg ;M,=0,7 kg ;€=0,025m;
[=0,1m;a=0,0t m;b=0,012! m; PMAX=300.00( Pa ,
e torque:

T=5(-1,7210 “¢°%+1,3510 ™ »°-3,8310 > »*+3,9410 " ¢°+2,4710 >-¢p°—6,1410 > p+1,50
o resultado foi (sem mancal e juntas hidrodinamicas
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Figura 78: Velocidade Angular do volante
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Figura 79: Angulo de Rotac&do do Volante
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—Torque Fornecido
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Figura 80: Torque Fornecido pelo Motor Elétrico
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Figura 81: Poténcia Fornecida pelo Motor Elétrico
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Figura 82: Energia Fornecida pelo Motor Elétrico
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Portanto, o volume de ar comprimido e energidagfas respectivamente2 5¢.10°° m3 e
1490 J.

Quando se adicionaram o mancal e juntas hidrodo@sncom raios iguais a 0,005 m, com
graficos ja apresentados em 4.8. SimulagGes den%as8, os valores foram parase-10° m3 e
1964 J . Isto mostra, como esperado, que guandit@ \Ascoso ndo € significativamente alto, o
motor fornece mais torque, fazendo com que o voldenar comprimido praticamente nao se altere
e a poténcia aumente.

Ja para o sistema com mancais e juntas hidrodiadmgom raios igual a 0,05 m, e gréaficos
também ja apresentados em 4.8. Simula¢gbes do @isBenos valores apresentados foram de
0,527-10°° m3 e 1048 J, mostrando que quando o atrito viséas@ior, 0 motor fornece maior
torque, a velocidades muito mais baixas, ocasiangpoténcias menores, e volume de ar

comprimido muito menor.

Com relacdo aos esforcos nos mancais, pode sevabseie o0 modelo criado com mancais
hidrodindmicos curtos pouco difere dos esforgcosnm@dmcais ideais (se apresentam abaixo os

esforcos somente do intervalo de 1,9s até 2,5gagesta mais proximo da estabilizacéo):

—FX1_MEA_1

L

2000.0

1000.0

0.0

LAt

-2000.0
19

Force (newton)

HE

2.05 22 2.35 25
Time (sec)

Figura 83: Esforcos na direcdo X no contato Maniklhivela para o modelo com mancais
hidrodindmicos curtos
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Figura 84: Esforgos na dire¢do X no contato Mankklhivela para o modelo com mancais ideais
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Figura 85: Esforcos na direcdo Y no contato Mandalhivela para o modelo com mancais
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Figura 86: Esforgos na direcdo Y no contato Mandalhivela para o modelo com mancais ideais
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Figura 90:

Figura 91:
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Esforcos na direcéo Y no contato MarayBlela para o modelo com mancais ideais
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Figura 92:
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Esforcos na direcéo X no contato Bieiat®o para o0 modelo com mancais ideais
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Figura 93: Esforcos na direcdo Y no contato Bielat& para o modelo com mancais
hidrodinadmicos curtos
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Figura 94: Esforcos na direcdo Y no contato Bielat& para o modelo com mancais ideais
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6. Conclusoes

O modelo criado permitiu a avaliacdo dos diversoametros de um compressor alternativo
comum, como ja muito explorados na literatura,rassimo a avaliacdo do seu mancal e juntas

hidrodindmicas, tanto na excentricidade e Orbissdg, assim como o atrito viscoso presente nelas.

Primeiramente, o0 modelo mostrou que existe umaegeqdiferenca de simulacdo entre o
software ADAMS e matlab, proveniente do método mtegracdo usado de cada um, que fica

desprezivel ao se atingir o regime permanentedigparacdo dos sistemas 5 e 6).

Além disso, o modelo mostrou a faixa de grandezatiio viscoso para 0s casos estudados,
assim como a sua curva caracteristica, que é altandependente da excentricidade e velocidade
relativa entre as partes, assim como dos elemeatmdrutivos tais como comprimento, folga radial

e principalmente raio, nos casos de mancais curtos.

Ele mostrou ainda, que, em um dos casos, ndo hgranele variagdo das velocidades dos
elementos envolvidos (biela, manivela e pistdo) sim da poténcia, pois como o atrito Vviscoso
tende a desacelerar tais elementos, o torque fdmeelo motor aumenta a ponto de reestabilizar

as velocidades, e consequentemente aumentandéreipotecessaria.

Ja no outro caso, onde o atrito observado foi mua#mr (devido ao maior raio do sistema),
pode-se observar que o sistema estabilizou magarapnte (ver secéo 4.8. Simulacdes do Sistema
8) com significativas alteracbes nas velocidades domponentes envolvidos, da poténcia

desprendida pelo motor e do volume de ar comprirpedo compressor.

Ele mostrou também que a estabilizacdo da excelattie das juntas e mancal
hidrodiamicos assim como do atrito viscoso € diferejue a estabilizacdo da velocidade de biela,

manivela e pistdo (no caso mostrado, maior) quandsiderados sem atrito.

O modelo construido ndo se restringe a pequenoressores, como 0 caso estudao,
podendo-se variar os parametros desse para sarestmdpressores alternativos de grande escala

também (ler o manual em anexo).

O modelo, porém, possui a restricdo de mancaisodiitBimicos curtos, apresentando
resultados distoantes da realidade quando o raionaacal for menor que duas vezes 0 seu
comprimento, e assim sO podera servir como basemiparacdo para um modelo mais complexo

de mancais hidrodindmicos quando tais valores foespeitados.
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Anexos

Manual de utilizacdo do ADAMS:

Nesse manual estdo indicados os passos basicos para que o leitor saiba como lidar
com o modelo em ADAMS criado para o sistema pistdo-biela-manivela com mancal e
juntas hidrodindmicos de um compressor. Nao é intuito deste familiarizar o leitor com o
ADAMS inteiros, somente com as partes relacionadas ao modelo, para seu uso. O
ADAMS possui algumas plataformas diferentes de trabalho, como a Car, a View, a Solver,
entre outras. Para a utilizacdo do modelo sé se faz necessario o entendimento do ADAMS
View.

Primeiramente o leitor deve abrir o modelo criado em ADAMS, a partir do ADAMS
View, e para isso ao abrir o ADAMS View deve escolher a opgéo Import a File e apontar
no campo ao lado de “Start in” para a pasta onde o modelo esta salvo e clicar em “Ok”.
Apos isso, deve dar um duplo clique (ou clique com o botédo direito do mouse, seguido da
opcao “Browse”) no campo ao lado de “File to read” e selecionar o arquivo onde esta o
modelo.

O modelo aberto ja esté funcionando, necessitando somente dos dados de entrada
do sistema. Porém, para a familiarizacdo do leitor, serd mostrado o passo a passo na
construcdo do sistema, desde o inicio, para o caso da necessidade de alguma alteracéo
no futuro.

O primeiro passo a se realizar é inserir variaveis construtivas do sistema. Essas
variaveis podem ser alteradas entre simulacdes, porém durante uma simulacdo elas
possuem valor fixo, diferenciando-se assim das variaveis de estado do sistema, que seréo
explicadas posteriormente. Para se inserir uma nova variavel construtiva, tem que se
apontar no menu superior para “Build”, em seguida para “Design Variable e finalmente
para “New”. No campo ao lado de “Name” deve-se inserir ."nome do sistema”.”nome da

variavel”.
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7 Adams/View MD Adams 2010
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Figura 95: Varidveis Construtivas

As variaveis construtivas do sistema sao:

- A: (area transversal do cilindro da camara de compressao, sendo igual a

- D? )i
4

- clreancel; clearence2 e clearence3 (folga radial dos diversos mancais
hidrodindmicos com indices ja explicados na se¢do de modelagem do sistema);

- cm_biela (distancia do ponto de contato entre biela e pistdo para o centro de
massa da biela);

- cm_manivela (distancia entre o ponto de contato entre manivela e mancal
para o centro de massa da manivela);

- comprimentol; comprimento2 e comprimento3 (comprimento dos diversos
mancais hidrodinamicos com indices ja explicados na secédo de modelagem do sistema);

- comprimento_pistdo (comprimento do pistdo, e ndo possui influéncia sobre a

simulag&o do sistema, sendo somente visual);

101



- D (diametro do pistdo sendo igual a 2-raio_pistar );

- e (comprimento do ponto de contato entre manivela e mancal até o ponto de
contato entre manivela e biela);

- grossura (espessura de biela e manivela, e ndo possui influéncia sobre a
simulag&o do sistema, sendo somente visual);

- Jb e Jv; (momento de inércia da biela e manivela respectivamente, com
relacdo ao ponto de contato entre biela e pistdo e manivela e mancal, respectivamente).
Este parametro requer atencdo para que nao se gere biela e manievela com ponto algum
com momento de inércia menor que zero (lembrar do teorema dos eixos paralelos);

- k (constante politropica);

- | (comprimento da biela, desde o ponto de contato com a manivela, até o
ponto de contato com o pistao);

- Mb; Mp e Mv (massas da biela, pistdo e manivela, respectivamente);

- mi (viscosidade do dleo utilizado para lubrificacéo);

- PATM (pressao atmosférica);

- PMAX (pressao de descarga do compressor);

- PMIN (presséo de succao do compressor);

- raiol; raio2 e raio3 (raio dos diversos mancais hidrodinamicos com indices ja
explicados na secao de modelagem do sistema);

- raio_pistao (raio do pistao);

- To (torgue inicial, quando o motor considerado for linear);

- VM (volume morto da camara de compresséao);

- VMAX (volume méximo da camara de compressdo desconsiderando o
volume morto, sendo iguala 2-e-A ), e;

- w (velocidade de torgue nulo para motor linear).

Feito isso, o sistema em si tera de ser construido. Para isso se utilizara a
ferramenta (clicando com o botdo da direita) no botdo da segunda coluna da primeira
linha do menu “Main Tool”. Primeiramente se criara a manivela clicando em na opg¢éo
“Link”, deixando ativada a opcao “New Part”. No campo abaixo de “Length” se colocara a
variavel e, nos campos abaixo de Width e Depth se colocara a variavel grossura (sem
esquecer de ativar as caixas relacionadas as dimensdes), e em seguida se clicard com o

botdo da direita em qualquer lugar e na caixa que aparecer se colocardo os dados “0, 0,
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0” e “related to origin” (ou pode-se clicar diretamente no ponto 0, 0, O no desenho) e
depois se clicara novamente com o0 botdo da direita em qualquer lugar e na caixa que
aparecer se colocardo os dados “(-e), 0, 0” (ou pode-se clicar em qualquer ponto negativo

do eixo Xx).
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Figura 96: Construcéo de Sélidos

Similarmente se criara a biela, s6 que com “Length” com variavel |, com o ponto
inicial sendo “(-e), 0, 0”, e ponto final como “(-e+l), 0, 0”. J& o pistdo serd criado com a
ferramenta “Cylinder” no mesmo menu de “Rigid Body”, e “Length” com variavel
comprimento_pistao e “Radius” com variavel raio_pistao, ponto inicial “(-e+l), 0, 0) e ponto
final “(-e+l+comprimento pistao), 0, 0.

Além dessas partes, devem ser construidas também duas partes adicionais que
serdo os apoios do sistema. A primeira serda 0 mancal de apoio da manivela, por
simplicidade uma esfera, no centro de referéncia, e portanto clica-se em “Sphere” em
“Rigid Body”, deixando a opc¢ao “On Ground” ativa. Pode-se colocar qualquer valor de raio
para a esfera, contanto que sua posicdo fique no centro de referéncia. A segunda sera o
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cilindro da camara de combustéo, portanto a ferramenta “Cylinder” de “Rigid Tool”, com a
opcéao “On Ground” ativa, podendo se colocar o mesmo valor de raio do pistao, e qualquer
comprimento, desde que fique orientado no mesmo sentido que o pistao.

Em sequéncia, deveriam ser criados os vinculos do sistema. Porém ndo serdo
utilizados os vinculos fornecidos pelo ADAMS para o contato entre manivela com mancal,
entre biela e manivela, e pistdo com biela, pois serdo justamente os vinculos a serem
simulados e estudados (que seriam a opc¢ao “Revolute” dentro do botdo da segunda
coluna da segunda linha do menu “Main Tool”). Cria-se portanto somente o vinculo entre
pistdo e cilindro, que serd a op¢ao “Cylindrical” dentro do botdo da segunda coluna da
segunda linha do menu “Main Tool”, escolhendo-se as opc¢fes “2 Bod- 1 Loc”, “Pick
Feature”, “Pick Body” e “Pick Body” e posteriormente escolhendo-se o pistdo e o cilindro
(dica:se estiver dificil escolher o corpo, por estarem ocupando o mesmo espago, clique
com o botdo da direita sobre eles para abrir um menu com as opcbes), sendo a
localizac&o do vinculo no centro do pistdo e vetor de orientagcdo na direcdo do eixo de
ambos. Apos isso, por comodidade deixa-se o cilindro invisivel, clicando com o botéo da
direita sobre ele e em seguida “Appearence”, selecionando transparéncia para 100%.

O proéximo passo € criar as medicfes que o ADAMS realiza ao longo da simulacéo
e que podem ser depois apresentadas em graficos. Para isso devera se acessar 0 menu
“Build”, “Measure”, “Point-to-Point” e “New”. A nomenclatura € similar a das variaveis
construtivas, mas agora deve-se escolher, conforme a variavel a ser medida, se é uma
distancia, uma velocidade, uma aceleragdo, uma velocidade angular ou uma aceleracao
angular. Serd mostrado o exemplo para uma variavel medida e em seguida e depois se
explicardo cada uma das outras variaveis.

Portanto, para medir, por exemplo, a variavel X2p que é a velocidade relativa, em
X, do ponto da biela do contato entre biela e manivela e ponto da biela do contato entre
biela e manivela (lembre-se que ndo € zero, pois existe a excentricidade proveniente da
teoria de mancal hidrodinamico), utiliza-se a opc¢éo “Characteristic: Translational Velocity”,
“Component: X". Para se definir os pontos “To Point” e “From Point” clica-se com o botéo
da direita em tais campos “Marker” e “Pick”, e clica-se nos pontos desejados. O ADAMS
cria uma séria de marcadores para cada parte que € criada, para facilitar na hora de criar
tais medidas, e quando se clicar com o botdo da direita em cima de uma peca, no
momento da escolha dos pontos, serdo mostrados os marcadores naquele ponto, para
ficar mais facil a escolha. Se se souberem os marcadores, pode-se usar também a opgéo

“Marker” e “Browse”.
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Figura 97: Measures

As medidas do sistema s&o:

- OMEGA2, OMEGAS3 (velocidade angular relativa entre biela e manivela e
velocidade angular relativa entre biela e pistéo, repectivamente);

- PHIp (velocidade angular da manivela);

- X1, X2 e X3 (excentricidade em x para os diversos componentes dos
mancais hidrodinamicos com indices ja explicados na secédo de modelagem do sistema);

- X1p, X2p, X3p (derivadas temporais de X1, X2 e X3);

- Y1, Y2 e Y3 (excentricidade em x para os diversos componentes dos
mancais hidrodindmicos com indices ja explicados na se¢cdo de modelagem do sistema);

- Y1p, Y2p, Y3p (derivadas temporais de Y1, Y2 e Y3), €;

- XP e Xpp (distancia entre o centro de referéncia e o ponto de contato da
biela com o pistéo e sua derivada temporal).

ApoOs a criacdo das medidas do sistema, é necessario criar as forcas que agem no
mancal e nas juntas do sistema. Mas para isso, serdo criadas algumas variaveis de
estado que diminuem o tamanho da funcado a ser inserida. As variaveis de estado, como ja
dito, sdo aquelas que possuem valor variavel ao longo da simulacdo. Para criar uma

variavel de estado deve se recorrer novamente ao menu “Build”, “System Elements”,
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“State Variable” e “New”. Para se alterar a formula da varidvel, basta clicar nos 3 pontos
ao lado direito do campo “F(time, ...)", e para alterar a condicao inicial, basta alterar ao
lado do campo “Guess for F(t=0) =". Quando uma variavel de estado, ou qualquer outra
funcdo do ADAMS se referir a uma outra variavel de estado, € necessario que ela utilize o

comando “varval(“variavel referida”)”.
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Figura 98: State Variables

As variaveis de estado do sistema séo:
- t (torque de entrada do sistema);
- Ei ( (X7+Y7)*® ,i=1,20u3)

- EPSi( varval(E,) ,i=1,2ou3);
clearence

- EPSip (,i=1, 2 ou 3);

- GAMMAIp ( —(Y;- X, p—X,-Y;p) ,i=1,2o0u3);
varval(E,)?

- Aepsi( (1-varval(EPS)’)*® ,i=1,20u3), e;

- Bepsi ( 1+2-varval(EPS)* ,i=1,20u 3);
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- TorqueViscosoi ( ‘w; ,i=1,20u3);

- Poténcia (que é a multiplicagdo do torque fornecido por PHIp).

Também é criada uma equacédo diferencial somente para se medir a energia
fornecida pelo motor, similarmente ao que foi feito nas variaveis de estado. Como a
energia € a integragdo da poténcia no tempo, basta que sua formula seja:
varval(potencia).

Em seguida serdo criadas as forcas dos vinculos no sistema, com o botdo da
segunda coluna da quarta linha do menu “Main Tool”, “Force (Single Component)”. Se
escolhe a opcao “Space Fixed” e “Pick Feature”. Em seguida se colocam as forgas, com
valor constante qualquer (que depois sera alterado) em cada mancal e junta, que sédo dez
no total: em x e y para a conexdao da manivela com mancal; x e y para a conexao da
manivela com a biela, tanto para a manivela como para a biela, e; em x e y para a
conexao da biela com o pistdo, tanto para a biela, quanto para o pistdo. Tais forcas terao
tamanho reduzido com a ajuda da funcéo “varval’ e com as variaveis de estado reduzido,
e para a sua alteracao (de constante para a férmula dada pela teoria de mancal curto
hidrodindmico) é necessario clicar na forgca com o botdo direito do mouse e em seguida
modify.
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Figura 99: Forgas Externas

Por fim, serdo criados os esforgos externos do sistema, que sdo o torque fornecido
pelo motor a manivela, a forca de resisténcia do ar na camara de compressdo e 0s
torques viscosos no mancal e juntas. Tais esforcos sao similares a criacdo dos esforcos
nos vinculos, sendo a posi¢cao do torque do motor no centro de referéncia, o sentido de
cada torque viscoso contrario ao do movimento imposto pelo motor, e a forca de
resisténcia do ar no centro do pistdo, com sentido negativo em x e férmula (que ja
considera todos as quatro partes do ciclo termodinamico na camara).

“IF(XPp: IF((PMAX*VM**k)/((.sistema.e+l-.sistema.XP)*.sistema.A+VM)**k)-PMIN: PMIN,
PMIN,((PMAX*VM**k)/((.sistema.e+l-.sistema.XP)*.sistema.A+VM)**k)), IF(.sistema.XP-I:
PMIN, 0, PMAX), IF(((PMIN*(VMAX+VM)**K)/
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((.sistema.e+l-.sistema.XP)*.sistema.A+VM)**k)-PMAX : (PMIN*(VMAX+VM)**k)/
((.sistema.e+l-.sistema.XP)*.sistema.A+VM)**k, PMAX, PMAX))*.sistema.A-
PATM*.sistema.A”

Para simular o sistema, basta se utilizar a fungcéo “Simulate” do menu superior e
escolher “Interactive Controls”. Dentro do menu que se abrir, para que a simulacao seja
veloz deve-se retirar a opcado “Update graphics display”. Para os graficos ficarem
adequados deve-se aumentar o0 numero de passos em “Steps” e o tempo final de
integracdo é dado ao lado de “End Time”. Além disso, para se melhorar a simulacao,
deve-se utlizar a opcédo “Dynamic” em “Sim. Type”, e depois clicar em “Simulation
Settings...” e alterar o “Error” e “Hmax” (sugestdo: maximo de 1l1le-8 e 1le-6,

respectivamente, e se nao funcionar, diminuir ainda mais).
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Figura 100: Controle de Simulagao

ApoOs a simulacéo, deve-se utilizar o “Post Processor” para se avaliar os resultados,
na terceira coluna da quarta linha do menu “Main Tool”. Pode-se entdo criar diferentes
paginas com diferentes gréaficos. Para se adicionar um grafico, basta selecionar a medida
e “add curve” e para trocar de curva basta utilizar “surf” e em seguida selecionar a

medida. Se for necessario se plotar uma curva ndo em funcéo do tempo, mas em funcao
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de outra medida, como por exemplo para a orbita da excentricidade de uma junta, pode-

se utilizar o botdo “Data” em baixo de “Independent Axis”.
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Figura 101: Post Processor
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